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Koshdumpenter A; psaga Juprxne (4.2) By)KHO 3apaHee ONPENENMTS M8 MH-
TepBana (0,00). Moxxuo Taroke onpenenurs K03(QOHIMERTH A; I[yTEM MMHMMM-
sawuy kBagpara ommbkx E? ¢ yuerom A mua i=1,2,...,4, wo sTa mpoGiema
TIPHBOJMT K HENMHEHHOH cucTeMe anreGpamyecKuX YPaBHEHMH, KOTOPYIO IIPaKTH-
YECKHM HEBO3MOYKHO DEIIHTE.

5. 3axmogenne

Meron KOHEUHBIX 9J/IEMEHTOB GOMbIIel UaCTBIO MPHMEHACTCA I PEUICHHA Kpae-
BEIX sajaq Ausl fudQepeHIpEaibHbIX YpaBHeHuH SIUNTMYECKOr0 THa. B npu-
MEHEHHOM B JIaHHOH paboTe METOE pEINeHMS CMEIIaHHBIX 3aaY s ypaBHeHuH
. TapabONAUECKOr0 THIA MOXKHO MCIOJB30BATh PaspaGOTAaHHBIE YIKe IPOrpamMMBI
W MBBECTHBIE AITOPATMBL [AJI PEUICHHS KPAeBBIX 3a7a7 A HILTHITHICCKIX ypa-
BHEHEH 2-r0 TIOpAOKA.

TIpm IIpUMEHERHME TPEYTONBHBIX ¥ IPAMOYTOIEHEIX JIEMEHTOB JOKA3aHA CXO-
TEMOCTE PELICHUsT IPHCOEMUHERHOM mpoGiems! [3, 9, 10].

Hna ofparmoro mpeoGpasosamust Jlannaca TOKA3aH TIOAXO/AIiL MEeTOx pas-
JIOXEHHA peleHus B P JApuxie, KOTOPEI NPHHOCKT OYeHh XOPOIINE PEsyib-
Tatsl B 067IacTy 372y JmueiiHol Baskoynpyrocry [4, 5, 6, 7]. D Gomee Tounoro
ONpeJeNeH st 06paTHoro npeobpasoBaHmA, TTABHEIM 0OPASOM UL MANBIX SHAUC-
HAH BPEMCHH f, HY)KHO aIMPOKCHMHPOBATH Pellenwe psapom (4.3) ¥ Hafftw anro-
DHTM JUIA ompepenerus KoadduupuenTos aroro psina. '

TIpy IPMMEHEHMH IPOCTPAHCTREHHBIX STEMEHTOR MOYKHO aHATOTHIHO pexmTh
TAKKE TPEXMEPHOE YpaBHEHHE TEIUTONPOBOLHOCTH .

B pammoi paore npasas wacts ypasmemas (2.1) He saBucHT OT BpEMEHH 1.
Tpu mocrarouroit rmamxocry bymm (X, 1) MOYKHO TeM JKE CIIOCOBOM PEIIuTh
TAOKE ATy Bappance ofmiyro mpoGnemy, HO mpu ofparHom mpeoGpasopamay Jla-
T1laca HEBOIMOXKHO BEIPASATS pemerue B Buge (4.1), mOToMy UTo BEKTOp MPaBbIX
uactet F me Oymer mameitmoit dyHxumeit mapameTpa p.

Presented to the Semester
Mathematical Models and Numerical Methods
(February 3—June 14, 1975)

BANACH CENTER PUBLICATIONS
VOLUME 3

PROJECTION METHODS IN THE APPROXIMATE SOLUTION
OF THE EIGENVALUE PROBLEM IN A HILBERT SPACE

K. MOSZYNSKI

- Institute of Math ics, Polish Academy of Sci , Warsaw, Poland

1. Introduction

Let H be real or complex Hilbert space with the scalar product (-, ) and the cor-
responding norm || - ||. ‘

Let @ be a subset of the real interval (0, 1] with an accumulation point at zero.

In what follows ¥} will denote.a linear subspace of H of finite dimension d,,
where d, - o0 when 2 — 0.

We are interested in the approximation of the spectrum of some class of linear
operators defined, in general, on some subspace of H, by means of consecutive
projections onto appropriately chosen subspaces ¥, < H, when & — 0.

Our investigations are based on the classical so-called Perturbation Theorem [1].

Let us formulate this theorem in the case of a compact operator T,

‘T: H—- H.

It is very well known that the spectrum of a compact operator is a finite or
infinite sequence of eigenvalues with possibly only one accumulation point zero.
Denote by (') = {4,},—1, ,,... the spectrum of 7. Let ¢ and & be sufficiently small
positive numbers. Denote by K, the disc of radius & centred at zero, dnd by K?
the discs of radius &, centred at 4,. Given §, there is only a finite number of A’s
outside K.

Assume that:

—the eigenvalues 4y, 4,, ..., Ay, lie outside Kj;
—Ks K] =@ and K¥nK}!=Ofork#1k,1=1,2,..,N;.

Then we have ’

Tre PERTURBATION THEOREM. Let a family of linear continuous operators {T}yco
be given

T,: H— H,

[183]
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such that

|Tw—T| -0 as h-0.

For any ¢ and § there is hes > O such that for every 0 < h < hy, he @

—each disc K{,j=1,2,...,Ns, contains exactly r; eigemalues of Ty, (counting
their multiplicities), where r; is the algebraic multiplicity of 2;;

—all eigenvalues of Ty, which are contained in none of the discs Ki,j = 1,2, ..., N;,
lie in the disc K;. m

Here we denote by || - |xy the norm of a linear map defined on the space X

with values in the space Y.
We write | - [[x instead of | - |xx, or simply |- |, if the space is fixed and

no confusion can arise.

2. Projections from H onto finite dimensional subspaces

A bounded linear map =: H — ¥V, where V is an arbitrary linear subspace of H,
is a projection iff

(A} T = 7.
A projection = is called orthogonal iff
. VxeHVEeV (x—mx, &) = 0.

It is easy to verify that:
—a projection x is orthogonal iff @ = z*;
—for any projection s we have ||z|| > 1, and if = is orthogonal then [=] = 1.
Lemma 2.1. Each linear map my: H — V), onto a dy-dimensional subspace Vy, < H
is of the form

dy
22 mx = e, 9l),
Jj=1

where ¢ft, j=1,2,...,d,, are linearly independent elements of some basis of Vi
and v}, j=1,2,..,d,, are some linearly independent elements of H. Given a basis
o ji= li 2, ..y dy, the elements g}, j = 1,2, ..., d, are uniquely determined by m,.
Proof. Observe that
dp

VxeH mx= Zc}(x)rp}
J=1

h h
[49) - [
, cin(x). (wx, ¢l
where' Gor = (9}, ¥ j=1,3. .4, is the' Gramm matrix of the system ¢, ..., gh,.

and hence

" (%) Where we denote by (-, -) the scalar product in H.

icm
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This means that cfi(x), j = 1,2, ..., d,, are linear continuous functionals on H
and hence )
) =Ce,vl), j=1,2,...,4,
where ¢ € H are uniquely determined elements of H.
Now suppose that for some complex numbers u,, ..., i,

dn
@
Dl >0
=1

and

dy
zﬂi‘l’? =0.
=
Put y = [y, ... )" and (x) = [ch(x), ..., ch, (x)]"; then
n (ﬂhx> ‘P’i
VxeH 0= (x, Z,u,-w’})y = y¥ci(x) = y*G,;,,‘[ : , ]
=1 (wnx, @)

Denoting [1,, ..., Z“,,k] = y*Gu! we get
dp dp
VxeH (”hx’zlﬂﬁf)ﬂ =0 or VeV, (E,Zlﬂ'})ﬂ =0,
= =

which is impossible because [1;, ..., 45,] # 0 and {@"}j=1,5, . 4 is a basis of V. m
LeMMA 2.2. A linear map. (2.2) is a projection iff the systems {¢h}i=1,a,..., 4, and
{W}i=1. 2. ....ar are mutually biorthonormal, i.e., iff
@hvl) = 0u, k,1=1,2,..,4d,.
Proof. (a) Let (¢}, ¥¥) = 8. Then -

dp dp  dy

dp
mymyx = Z, i, ) = ; ,Z PP Cx, 9l) = ; Fix, ¥) = mx,

i.e. 7, is a projection.
(b) Let w7, = m,. Then
dy  dy

dp
VieH ZZ @ )0, g = D (5, v
== =1

Since the system %%, ..., f, is linearly independent, we can choose elements
yeH, k=1,2,..,d, such that
(679 1/’f’) =6u, k,1=1,2,..,d,.
Now taking x =y, k = 1,2, ..., d,, we get

dn
Z (¢, ¥ 8 = Oy,
=1


GUEST


186 K. MOSZYNSKI

ie.
@) =8y, kJj=12,..d.m
Lemma 2.3. Let m, be a projection my: H—- Vi, Then m, can be split into the
superposition of two maps py and Iy,

(2.3)
where py: Xy H is a one-to-one linear map from a dy-dimensional vector space
X, is a linear map from H into X,. Moreover, ryp, = I,

X, into H, and ry: H o5
is the identity map of X,,. Given a basis ¢, ..., ¢ly, the pair py, ry is uniquely deter-

Ty = PuTh>

mined.
Proof. Put
@4 rax = (%, 9, o, (%5, YT € X
2.5 P = > o,
N &
where

x =[x, . xh]T e X,

dp
(; TR N

, Yh, are biorthonormal. &

Then 7, = p,r, and

dj
Vi eXy  rpaxy = [(an #ixl, w’i),
J=

because the systems ¢, ...
LemMMA 2.4, Let

hT —
:xt;n] = Xh

, ¢ and 9t L
dn
mx = Z Gr, ¥ eh.
=i
Then

dn
wx = Z Ce, ¢l
Jj=1

Proof.

dy d
VeyeH  (mx ) = () dn ey = Y v )
=1 J=1

dn dn
= Z DG =[x, ;wﬁ(y, ) = G, 7,
v =

dn
atx = ) (vt W
J=1

icm°®
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LeMMA 2.5. m, is the orthogonal projection onto Vi, iff both mutually biorthonormal
systems @', ..., ¢4 and @4, ..., yl, are contained in V). In this case

2.6) Gyr = Gt
and
) Whs o whl = [oh, ., ohlGal,

where G,,,;. and Gyx are the corresponding Gramm matrzces Jor the systems ¢!, .
and v, ..., ¥l
Proof. (2) Let m, be the orthogonal projection onto V,. Then nf =, i.e.

i
=0y Pdy

VxeH Z%(" v = Zw,(x, 5.

v

In particular, for x = ¢f we have

dp dy

(2.8) Z Pilel v = ol = ) vi(ok, o)
j=1 j=1

and for x = g}

29 Z Fheut, o Z viCyl, o).

. Using the above relatxons we obtain
dn  dn

Z Z vk oD @l v) =vi  and

dy

Z(wﬂ, ) (wi, v = bu,
=17=1 =
i.e.
(2.10) GpGyi =

The relation (2.6) follows from (2.10), and (2.7) from (2.9). Hence

{Wh, vl < Ve
(b) Conversely, if {y}, ..., yl} = V4, we get immediately by the biorthonorm-
ality
dn
= Z Ay 97? ’
=1
where
a4 = (akj)k Jj=1,2, = Gq:" )
and hence a; = . Then
dn_ dx dn
VxeH #fx= ZZ“U?’J(—" o) = ZfP ( X, Z akﬂ)’t'l)
== 2 B
dn

(P’}( Zaﬂ‘(p") Zq] (JC 1/") = X,

=
i.e. m, is the orthogonal projection. ®
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Let
an
T X = Z 97.';("’ "P?)
j=1

be a family of projections onto the spaces V}, he©.
The adjoint projections 7} admit splitting of the form (2.3). Denote

@11 T = GuShs
where
dy
(2.12) qp Xy = ZTP?x;'; Xp = [x,;a "'axsh]TEXh:
2.13) spX = [0, @)y ey (s Pi)T€Xy, x€H.

We need here to introduce a norm topology in the spaces Xj,.

In general, the choice of a norm in X3 depends on the problem under considera-
tion, however the main results of later sections are independent of this particular
choice.

Let us discuss briefly one of such possibilities.

In the finite dimensional space X, we introduce the usual Cartesian scalar
product

dh
(ns Yidx, = Z LR
= :
where
Xp = [ﬂ:---axg,.]T and In = [J’?, ---J?,.]T~
Observe that
dy dn dy dy
Q1) g = (Do D ) = DD @ v
= = =ik=1
dy dy
= Z Z (ﬂ’l’l; PNXET) = (s Pave) = Gon Y-
=191
LemMA 2.6. Let 0< 2} < ... < M, and 0 < ptf < ... < il be the eigenvalues

of the Gramm matrices G, ami Gwhs respecttvely
Then the following inequalities hold:

(2.15) VI < Ipilxer < VA,

(2.16) VL < aulxnn < Vil

Q.17 ‘ ||"h”wn. < ”élh"x.m

2.18) } lsullexy < lpalixess

@19 - Il = 7k = Ipwrall < 1PalxualPulaxy < ¥/ Fi el
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Proof. Vxy X, x, = [xt, ..., xL]%,

dn dy dn  dn
A _
Ipwxillfy = (Z o, Z(ka:':) = D @ oDF = x5 Gpry.
= =1 =1k=1
Since G, is Hermitian, we have
Gon = U¥ A, Uy,

where
h
24

Ay =

0 .
A
and U, is some unitary matrix. Put &, = Uy, x,; then & & = x¥x, and (2.15) follows
immediately. In a similar way we obtain (2.16).

Now, Vxe H
Irexl%, = (ParsX, @t X)e = (X, GuFuX)u = (x, 7 quruX)n
= (X, guShgathX)g = s @ < rxllxl gnlxamllxla
and
Irsxlx, < lgulxnmllxlas

hence (2.17) follows. Using (2.14), we get (2.18) analogously. m

COROLLARY 1. If 7y, h € O, are orthogonal, then by Lemma 2.5 we have Gy = Gt
and hence

1 1
uh =g e M =7
L3
In this case
(220) l/;'h ”ph “ XnH =X ]/}*dna
1

(221) “rh”HX — 3
ERRTFT

Hhy

@2.22) Il < )/ S
1

COROLLARY 2. (a) If the eigenvalues of G and G are uniformly bounded with
respect to h € O, then the families

(2.23) {ph}hs@: {rilnees {qh}h59> {Sh}neos {m.}hee
are equicontinuous.

(b) If {my}neo are orthogonal projections and the eigenvalues of G» are uniformly
bounded and bounded out from zero with respect to h €0, then the families (2.23)
are equicontinuous.
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3. Discretisation of the space H [2],
approximation, stability

Consider the following family of triads
A = {Xy, Pu> Thneo

where X, are linear real or complex normed vector spaces of dimension dj, (d, — oo
when A — 0); p, are linear continuous one-to-one maps py: Xj, - H (called pro-
longations); r, are linear continuous maps r,: H 555 X; (called restrictions).

We assume that Vi € @, ry,p, = I, is the identity on Xj,. Observe that if m, = p,r,
then Vhe®, m, is the projection from H onto Vj = m, H. We assume that the
family of projections {m; }yce is uniformly bounded.

If the above conditions are satisfied, then U is called a discretisation of the
space H (see also Aubin [2]).

Let o be a discretisation of the space H. We say that U approximates the space
H iff there exists a dense subset Z < H such that

3.1) VzeZ |(m—Dz| =0
when h — O (see [3]). ) o
We say that a discretisation U of the space H is stable iff the families
{ph}h<h°7 {’h}hsh,
he®@ he®

are equicontinuous for some fixed constant ko < 1.

Corollaries 1 and 2 to Lemma 2.6 give the following sufficient condition of
stability of a discretisation 2 for the norms in X, introduced in § 2.

Assume that 34, > 03K > 0 Vhe O, h < hy,

Gull < K,
62) Gl
Gl < K,
where | - || is an arbitrary matrix norm. Then the discretisation U of the space H
is stable. Here we put
o} = puef,

where €%, j = 1,2, ..., d,, are the unit coordinate vectors of the space X;. Then
¥h,i=1,2, .., d, are uniquely determined (Lemma 2.1). —
. Lemma 3.1. If a discretisation W = {X,, py, 'y Jueo is stable, then the SJamily

{Pi ' Yheo

h<ho
Is equicontinuous, for some fixed h,.
Proof. Put
Vi = pn(Xs) = H;
then .

Tilv, = pit
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and hence
33K > 0Vhe® h<hoo pitlaxs < Illoxy < K- m

We say that a family {V}neo of subspaces Vy (%) of the space H approximates
the space H iff there-exists a dense subset Z = H satisfying the following con-
dition:

Vz € Z there exist a family of elements {2,(z)},ce such that

ou(z) eV, and [z—ou(z)] >0 when h -0
(see [3]). .

LemMa 3.2. Let a family {Vi}seo of subspaces. of H approximate the space H.

Let {mwyYreo be a family of uniformly bounded projections

Ty H'&;E' V;,,
llmyll < K (K does not depend on h).

Then the discretisation W = {X}, pu, 'uneo, where m, = p,r, (see Lemma 2.3),
approximates the space H.

Proof. It is enough to show that
VxeH |lmx—x|—-0 when h-0.
Let xe H and |x—z,] - 0, s - 0, z; € Z. Then
By = X 2y 2= () + 7 (04 25) — 22) (2= )
since v(zs) = 7,4(2s), 7 i @ projection onto #¥,, and .
% —muxl < llx— 2]l + l|zs—2a (2 + K[§on(ze) =zl + [l 2= x]].

For any ¢ > 0 we can first choose s such that |x—z]| < & and then, for this
fixed s, we choose /o such that for any 4 € ("),_ h < ho the relation |z,—vu(z)|| < &
is satisfied. Finally we get

lx—myx| < e+e+2Ke if O<h<hy, hec@. W
LEMMA 3.3. Let Z be a dense subset of H. If
VzeZ (m—Dz~->0 when h-0,

then the family of subspaces {Y,}nee, Yy = m,(H), approximates the space H.
Proof. It is enough to take y, = myz, y, €Yy, z€ Z. Then

lyp—z|| = |myz—z]| -0 when h—0, foranyzeZ.m

Lemma 3.4, Let W = {X,, py, Tw}nco be a discretisation of H. If W approximates
H then
VxeH |mx—x|—-0 when h—0.

Proof. Let & > 0 be arbitrary and let z, be an element of a dense subset Z = H
such that ||x—z,| < &, where x is an arbitrarily fixed element of H. Then

(*) Here V; need not be finite-dimensional.
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Jnx—x| < lma(x—z) |+ [l ze = zel +ze— X1 € Ko+ 2+ ||, 2,— 2,

because of equicontinuity of the family {m;}ico-
Now we can choose 4o such that for any €6, 0 < £ < hy, we get

lmnze—z|| < e.
It follows that
lwnx—x| € e2+K)
ifh<hy, heB. m
Adjoint discretisation of the space H

Let % = {X,, pu, "u}uco be a discretisation of the space H. Let e, ..., i, be the
basis of unit coordinate vectors in X. Put ¢} = pet, j = 1,2, ..., d,.
Then the projection m;, = p,ry,

Tt Hgoo Vi = py(X3) €« H

onto

is of the form given by (2.2):

dn,
VreH mx= Y gh(x, vl),
Jj=1

where the systems ¢}, ..., @, and ¢, ..., ¢}, are mutually biorthonormal, dj, being
the dimension of X,. From Lemma 2.4 we get

dn
Vield afx= Zw’;(x, oD = qusux,
J=1 .

where:
St H = X,
comx =0, ), s O, @)Y, xeH,
(33 @ Xy~ H,

dy
—_ h b
Gy = E yix, =[x, LT eX,
=1

are linear continuous maps (see Lemma 2.6),

Denote

x> = {Xh Tns S }neo-

It is easy to verify that A* is also a discretisation of the space H. We call 9* the
adjoint discretisation of H (with respect to 90).

The implications: .

A approximates H = A* approximates H;
A is stable = A is stable

in-general fail.

PROJECTION METHODS OF THE EIGENVALUE PROBLEM 193

4. Discretisation of compact operators

Consider a pair of Hilbert spaces ¥ and H with the scalar products (+,)g and
(-, ")y, respectively. Let T be a linear compact map,
T: V- H.
Let
Wy = X, o, i hneos  aff = plirfl;
W = XV, oY, i heos @ =pk, 1,
be discretisations of the spaces H and ¥ and let
A = {XF, af, sFheos ﬁi = gi'st,
W = (X, af, ¥ heos o =afsk
be their adjoints.
Define the maps
Ty =riTql,
Ty = af T = pE Tys);
then
Ty: X7 - XE,
Ty: V- H.
We call {ff,,},,ee the discretisation of T induced by Ny and Uy . There are many

possibilities of defining a discretisation of T'; this one, however, seems to be rather
convenient for our aims, because:

(a) in the case V' = H it involves only one basis, namely %%, ..., l,; .

(b) the assumptions concerning Wy and U, for the convergence properties
of fh, in this case, seem to be rather natural (see Theorem 4.3).

LeMMA 4.1 (see [4]). Let T: V — H be corripact, and let K2 H— H, he0,
be a family of linear maps such that

VxeH |x—Kyx|lg—0 when k0.

Then
(4.1 [I=K)Tlyg =0 when h—0.

Proof. Suppose (4.1) to be not true. Then

39 > 0Vhy3he®@,h < hy, |(I-K)Tlvg >4q>0,

ie. taking o = 1/k, k = 1,2, ..., we can find a sequence of points x, € ¥ and
a sequence of corresponding numbers A, € @, 0 < ki < 1/k, such that ||x[y =
and
“.2) | T— Ky Txilla > g > 0.

Since T is compact and ||x;]y = 1, without loss of generality we can assume
that the sequence of points y; = Tx; converges strongly to some element y € H.
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Hence .
=K Txillg < 1T~ Ki) Gx=Plu + 1T~ K ¥l
< M=Ky lalye—yla+ 1T Kp)yla.

Because of uniform boundedness of the family Xj,, the first term tends to zero
(Banach-Steinhaus Theorem). The second term converges to zero by the properties
of K;. This contradicts (4.2). m

LemMA 4.2 (see [4]). Assume T: V — H to be compact and K. V —~V, he0,
to be a family of linear maps such that:

4.3) VxeV |(I-K)x|y—0 when h—0.
Then
44 1TA-KH)llyg >0  when h—0.

Proof. Suppose (4.3) to be not true. Then, just as previously, we can find se-
quencesxz eV, e @,k = 1,2, ..., satisfying

Ixxlly = 1
and
@5 ITU— KXl >-q >0,
and such that the sequence
ze=TU~K¥x. e H
tends strongly to some element z € H, Hence
4.6) (21, D = (TA— KXk, 2)n = |2k when  k — co.
But since T: ¥V — H is continuous, T%: H — V exists and
(2, D) = ((I“K;::){Cks T*l)v = (xk: I-K) T*Z)V
< |- Ka) T*zlly - 0
when k& ~ oo in view of (4.3); i.e. z = 0, which contradicts (4.5). m

THEOREM 4.3 (see also [4]). Let T: V - H be a linear compact map and assume
that Ny and Wy approximate the spaces H and V, respectively. Then

17— Tillva < 10—a) Tlvw+ | || TU~2E Yva = 0 when  h—0.
Progf. Observe that
T-T, = ([~ 2) T+ 7 T(I-").

By the uniform boundedness of the family {nf},ce and by Lemmas 4.1 and 4.2
we get

|T—Tylive =0 when %A —0. m
Now assume that H = ¥V and %, = Uyz. We have the following:
.-COROLLARY. If H = V and Wy approximates H, then
B |T—T4llg = 0.

PROJECTION METHODS OF THE EIGENVALUE PROBLEM 195

5. Some general lemmas on eigenvalaes

LemMA 5.1. Let B: H — H be a linear operator and let n: H — H be a linear
projection, i.e. ww = 7.

Assume that
(CR)) B(I—m) = 0.
Then for an integer | > 0 and an element u € H, u # 0, and for a complex number A
we have

[B—Alu =0
if
(5.2) [xB—AIl'y =0
and

1
=283 () (- 2/ yy+ (~ 1z =0,

where y = mu, z = (I—m)u.
Proof. We have
!

=i = 3 () (28

On the other hand,
B =aB+(I-n)B
and
{(nB)f+(I—n)B(nB)j‘1 for j>0,
B =
I for j=0.

Hence
1

I
@-20) = 3 () (-1 aByY+ 1= 83 ) (- '~ amy

7=0
and foru = y+z

1
(53) [B—AIlu = (wB—AD'y+ Z (}) (= »-/(zBYz+
*
+(I—m)B ,Z () (= p-mBy-1y+
1
+(I—m)B ,Z: (3) (= p-ImBy-12

i
= B— Ay +(~Nz+I-m)B Y (}) (= ~I@By-1y
7=1-

because of (5.1).
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Now observe that if x; e wH and x, € (I-m)H and x,; # 0, x, O then x,

and x, are linearly independent.
Furthermore, observe that if y € zH and z € (I-=) H, then

mB— Dy = i( ) @BY (— 1)~y e uH

4
and
(I-m)B i () @BY (= ~ty+ (= Yz e 1-m) A,
i.e. the terms o
.5) @B—ADly and (l—n)B?: (3} (B (= 2=Iy+ (= 2z

are linearly independent (if do not vanish).

Now if (B—AI'u = 0, then using (5.3) we see that both terms (5.5) must be
equal to zero. Conversely, if both terms (5.5) are zero, then from (5.3) it follows
that '

B-ADu=0.m

LemMA 5.2. Let A = {X,, Py, ' Juco be an arbitrary discretisation of the space H

and let

Gh: X, [ nd Xh
be a finite dimensional linear operator (a matrix).
Put
Cy = pyGy1y.
Then
Cy: H-> H

and

(i) the non-zero eigenvalues of G, and C;, are equal and have the same algebraic
multiplicities;

(i) i A = 0 is an eigenvalue of Gy then it is also an eigenvalue of Cy;

(iii) the (generalized) eigenfunctions corresponding to non-zero eigenvalues of
Cy are contained in the subspace Vi, = p,(X,) < H;

@) If x € X, is a (generalized) eigenfunction corresponding ta a non-zero eigen-
value of Gy, then x = pyxy is a (generalized) eigenfunction of Cy corresponding to the
same eigenvalue. If x is a (generalized) eigenfunction of C, corresponding to a non-
zero eigenvalue; then x = p,x,, where xy is (generalized) eigenfunction of Gy, correspond-
ing to the same eigenvalue.

Proof. Observe that for any mteger k>0 and for any X = ppXy, Xy €Xp,
the following formila holds:

(5.6) (Ch“ Ax = Pu(Gh— ADfx,.

.
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Hence if x, isa (generalized) eigenfunction of Gj,, then x = p,x;isa (generalized)
eigenfunction of C,. The mu1t1p11clt1es of corresponding eigenvalues are equal.

If now
(G—=ADx =0, x#0,
with 4 # 0, then: .
k=1 '
ARk = Y ARGk yxt (= =0, f, =Y,
=0
ie.
k—1 k-p
Gy
== S{of heeanen-n
p=0

Hence x = pyx,, x, € X, (because DPi: Xiggz Vi © H) and by (5. 6) Xy, is a general-
ized eigenfunction of G,. m

Remark. Assume that H =V and Uy = Ay. Lemmas 5.1 and 5.2 reduce
the eigenvalue problem for the operator 7}, to the eigenvalue problem for the finite
dimensional operator f‘,, (see § 4).

First observe that

TU-2) = T~ Tyl = T—af' T
Hence, by Lemma 5.1, we can replace T, by

Thﬂh o 7’/. =Ti—T, = 0.

T, = af sflpf TS
and by Lemma 5.2 (for % instead of Ay) we can replace this last operator by

5.7 SEpET,: XH - XE.
It is easy to see that
) SEPE T, = GoaTh,

where G.,,',',' is the Gramm matrix of the basis ofn, ., ¢ j" of the discretisation Wy .

6. Discretisation of operators with compact inverse

Consider two Hilbert spaces ¥ and H with scalar products ( -, ) and (-, -) fespect-
ively, and such that there exists a compact map J

J: V- H (an imbedding).

Let
g = {XIF:PhH!.rl{!}hEQ:
A = (X7, qF, sF Yuco,
W = {XV,pF. 1} hices
S ‘2[$={Xl’,qf,s}’};.ee )
be discretisations of H and V. ‘
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Denote as before

.
off =pfrl, =l
of =piry, w =ash.

Consider a linear continuous map -
(6.1) AV H
and put
Ah = S}:{AP:-,,
Ay = gif dyrll = al An).

Then

' Ah: XIY s Xl{{a
Ay V—H.

We call {ff,,},,ea the discretisation of the operator A induced by Wy and Wy;
Ay is 2 (dF x dY)-matrix.

Observe that the definition of A, involves only the bases o, . q)"" and
@i s ‘Pdn

In pnncxple it is possible to define the discretisation of 4 in another way (see
for instance § 4), but this definition.seems to be convenient for our investigations.

A discretisation {/f,,},,sa of the operator 4 is called stable iff there exist 4o > 0
and a positive constant C such that for any £ @, k< ho,
6.2) Arts XF > XV exists
and
. i gy < €
(In this case dff = d}'!)
THEOREM 6.1. Let the topology in X and X\ be defined by (2.14). Assume that:
() the discretisation g = {X§', p}, i }eo is stable and approximates the
space H; )
(ii) the discretisation Wy = {X¥, pl , r¥ hneo is stable;

(i) 47 = dY;
(iv) the operator A: V — H is bounded and coercive on V, i.e.
6.3) |Alve < 0 and Iy >0VxeV (dAx, Jx)g = v|x|3.
Then the discretisation {zf,,},,eg is stable.
“Proof. Put
Ty = it Jpk.
Then
Jy XV - X

is a family of uniformly bounded maps: IIJ;,IIX;/ HS with « not depending on
he®,h < hy.
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Using (2.14) and (6.3) we get for any v e X}
(/‘fhv, Jh”),y,{* = (qi’A,,'U Py = (o A.Ph , 705 Jpy V)u
= (dphv, ol Jp§ 9)u = (dphv, JpY ©)a— (Aph v, (I—nf)Jp} 0)y
z ylpk ol — 1 Allvall (T- ) T lvalph ol .
By the compactness of J and by (i), using Lemma 4.1, we get
(Ahv Jh‘”)x" vilpk o3

with the constant y; not depending on he®, h < h,. Now, using Lemma 3.1,
we verify that

leielly = Blvlly
for § not depending on h e 0O, h < hy. Finally, -

||AW||XH allolly > (Ao, Ji0dyp = Killo)y
or
Iyl > Kllﬂﬂx;',
where K is some constant not depending on h € @, h < ho. From this last inequality
follows the existence of AA,rl, which is uniformly bounded. Since ff,, is defined over
the whole space XY, d} = d¥, and AA,, is one-to-one, it has to be onto the whole
space X¥. In other words,
A XE XY, he®,h<hom

Remark. From inequality (6.3) it follows easily that in this case the map J
must be one-to-one. m
Now put

By, = p,,"ﬁ;‘s,‘," .
It is clgar thaAt if the families {p} hco, {55 Jreo are uniformly bounded and the dis-
cretisation {d,};co is stable, then the operators
By H-»V
are uniformly bounded, i.e.
| Ballay < K

for he @, h < hy, with K not depending on h.
Observe that

(X)) ay By = pkr¥ pll Ah st = p¥ Ah s = By.
Assume that the linear continuous map A

A V onto H
has the continuous inverse A= = T

T: H V.

ey
onto
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Put

S =JT,

S: H- H;

then § is compact.
Denote

(see § 4). We have the following
‘THEOREM 6.2. Assume that:
(@) for some hy > O the families of maps
{sif }/.“ee, {Phnee
. F<ho h<ho
are uniformly bounded, >
(i) Wy approxirhates H;
(i) {AA,,},,EQ is stable.
Then there exists a constant C not dependi‘n‘g on h €6 such that
IJBy~ SNz < CIS— Syllg =0
Proof. We have
(S—S) 4B, = SAB,—S; 4B, = JA~'4B,~ S, AB,
= Byl Sqil sl Ak A 'sff = JBy~ ot Sq Ay A st

when B 0.

. = JB,— S} = JB,—S+S5-8S,.
Hence
JBy~S = (§—S;) AB,—(S—S)
and
- WB—Sle< AHVHﬁBh”HV'}'l]HS Sule < [14lyn - K+1])5~ Shl!a,
whiere ’
[Bullay < K.
By Theorem 4.3 we. get

1B, —Silla < CJ|S=S,lu >0 when A — 0. L]

Dernvrion. We call the spectrum of the Dpair of operators A, J the set of all
numbers A = 1fu where 4 is in the spectrum of the compact operator JA-1,
. JATU H-»H
(see [3]).
Using this definition we can state the following

THEOREM 6.3. Assume the conditions of Theorem 6.2. Let G,, be the Gramm
matrix of the form:

* =@y, gy = %m')a, i,j= i, 2, e,y

icm
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Then the‘spectrum of the following generalized matrix-eigenvalue problem:
6.5 [Ay—AGilx = 0

approximates the spectrum of the operator A in the following sense:

Consider the eigenvalues of the operator A lying inside a fixed arbitrary circle
C centred at zero on the complex plane, and the collection of -discs centred at these
eigenvalues, for any ¢ > 0.

For every & > 0 there exists hy satisfying the condition: If h < h,c and he 0,
then the above e-discs contain the number of eigenvalues of (6.5) equal to multiplicities
of the corresponding eigenvalues of A (counting their multiplicities). The other eigen-
values of (6.5), if exist, lie outside the circle C.

Proof. From the stability of {A:,},,sa it follows that 4, = dF, i.. AA,, and G,
in (6.5) are square matrices. Observe that

IB,(I—al") = JBy~ Byl = JBy—Jp} AyisH gl st = JB,~JB, = 0
because 55 gff = I Hence we can apply Lemma 5.1 and replace the operator JB;
by = TBy = gff st Jpk Ayt sE.

‘Now using Lemma 5.2 we replace the above operator by the matrix

SEJpY gt = GhAh B

AA,:‘ being uniformly bounded for ke @, h < h,. Now, it is enough to apply Theorem
6.2 and the Perturbation Theorem. m

Observe that the matrix eigenvalue problem (6.5), approximating the original
eigenvalue problem for the operator 4, depends only on the bases: -

(6.6) . {of™, .., o}
(see (2.15) and (2.18)).

Only the assumption (ii) in Theorems 6.2 and 6.3 makes use dlrectly of the -
approximating property of discretisation g, that is, involves both bases

{‘pllis' :‘Pdh}and{"/’ -’V)d}
‘We can, however, omit entirely the use of bases other than (6.6). We have
the following

THEOREM 6.4. Assume that:
(i) For some ho > O the families of maps

({‘s#}hsez {PI‘I’}I!EQ
h<ho h<ho

and  {g}*, ..., ¢i"}

are uniformly bounded,

«(ii) For the subspaces Vy, of H, spanned by the bases {pft,
{Vi}nee approximates the space H (see § 3);

(ili) The discretisation {Ay}yeo is stable.

Then the matrix eigenvalue problem (6.5) approximates the original eigenvalue
problem for the operator A in the sense of Theorem 6.3.

s EMY, the family
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Proof. Let g be the discretisation of the space H defined by a family of ortho-
gonal projections {7f }yco onto subspaces ;. Since the family {7} }y e is uniformly
bounded, then from Lemma 3.2 it follows that Uy approximates H. By Lemma
2.5 we see that 2 is entirely determined by the basis {¢", ..., @f*}. It now suffices
to apply Theorem 6.3. m

The trivial example of a problem satisfying conditions (6.1) and (6.2) stated
in this paragraph is the following

Au=Jdu onf,
u=0 on 00,

where Q is a bounded domain in R? with regular boundary. In this case we can
take V = H3(), H = H°(Q) = L,(2) and 4 = 4 (in generalized sense). In this
case, by Rellich Theorem, the imbedding J: ¥V — H is a compact linear map, and
A and A1 are bounded operators.

More advanced examples of elliptic problems are discussed also in [5] (see
Section 4, as well as works quoted in this paper).

Remark. In the paper [5] there are given error bounds obtained in a similar
way, in the case of a differential operator in the Sobolev space. The information
about the rate of convergence is obtained when the spaces V; = p,(X}) are special
finite-dimensional subspaces of piecewise polynomials.
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OB 3®®EKTHBHBIX METOJAX BBIYUCJIEHHA
COBCTBEHHBIX YHCEJI H COBCTBEHHBIX BEKTOPOB
C IOMOMmBIO METOMA SAAKOBH
¥ METOJIA JIOJKHBIX BO3MVIIEHUN

&, KVHEPT
Texnuueckuii BY3, Kapa-Maprc-Imaom, TP

B 3aMeTKe CONEPYMTCS YACTh JIEKIMH, IPOUMTAHHEIX ABTOPOM BO Bpemsa paborsl
cemecTpa ,,MaremaTHUeCKHe MOJENM M UHCIeHHbIE Merompl’” MexaynapogHoro
MaTeMaTHUeCKoro mertpa iM. Credana Banaxa B Bapmare. OmucriBazorcst apdex-
THBHBIE METOTE! NPMGIMKEHHOT0 BBIUHCIEHMA OTAEBHOTO. CODCTBEHHOIO UHCia
H COOTBETCTBYIOIIEr0 €My COBCTBEHHOTO BEKTOPA CHMMETPHYECKOH MATPHMIBI, CO-
crosumpe w3 ABYX sramor. Ha mepsom srane mpumenstercst meront SIxofu amemer-
TAPHBIX IUIOCKMX BpAIIEHWH JO TEX LOp, NOKA MBI HE CMOMKEM YKasaTh OTPE30K
HA BEIIECTBEHHON OCH, COMepIKalfuiil HATepecyiomee Hac cofcreenHoe wmeno. Ha
BTOpPOM STalle NPHMEHSErCs METOJ JIOMKHBIX BOSMYINCHUH I y-rovmennx <06~
CTBEHHOTO WHCHA ¥ COGCTBEHHOrO BEKTOPA.

Merox Sxo6u, ABIATOMUICS 5,TI00ANBHEFM’> METOLOM JUIS IIOJHOH mpoGire~
MBI COBCTBEHHBIX UHCEN, YCTAaHABJIABAET IIPH 3TOM YCJIOBHSA, JOCTATOUHBIE AMA
TPHMEHAMOCTH ¥ OBICTPOH CXOAMMOCTH METOZa JIOMKHBIX BO3MymieHui. Metox
JIOYKHBIX BO3MYIICHMM ABIAETCA ,,IOKAILHBIM’® METOMIOM st UacTHOH IpoGieMEl
COOCTBEHHBIX YMCEI.

Vines CoeMHEHAA STHX JBYX METOZOB CoAepymrcs B pabore [12] (cm. Tazoxe

[13D).
1. TeopeMsl TeOpHH BO3MYIICHHA CHEKTPA

TIpuBefieM HEKOTOpHIE OCHOBHEIC TEOPEMBI TEOPHM BOSMYI[EHHA CHEKTpa Camo-
CONpSDKEHHBIX OmepaTopoB A B rmbGeprosom mpocrpamctse H €O CKAIAPHEIM
npousBefermen (-, ) (MeTATsHOE H3JIOYKEH)E MPUBEIEHHBIX SAECh (haxTOB MOKHO
HaliTy, Hampumep, B Momorpadusx [1] u {8], cm. Taroxe [9]).

Trorema 1. Ilyems A camoconparcennviil onepamop 6 2ussbepmosos. npocmpar-

cmee H, B ozp ca 1D A i onepamop u nycms E, u E; obosHauarom
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