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1. Numerical arithmetic (fl)

We. consider computations performed in floating-point arithmetic (fl). Assuming
that neither over- nor under-flow phenomena occur, we characterize an fl-arithmetic
by a single, small positive number ¢: fi{g). We assume that the reader is familiar
with the rules of number (or vector, or matrix) representation in fi{g) and with
the rules of execution of the arithmetic fl-operations (cf. Wilkinson [7]).

Comments
1. In the case of the standard binary fl-arithmetic with ¢ digits mantissa,
equals 27", Typically pe [10~16, 10-6].

2. One can define the representation of number in fi{g) introducing the “round-
ing function” rd,: X —» X, < X < R, R being a space of real or complex numbers
(cf. Stoer [S]). The main properties of rd, and X, are:

\4 Ix_rdp(x)l <olxl, X, = {XEX;JC = rdg(x)}'

xeX
Typically
X={xeRx=0vy<lx]<gy}, 1071 <y <107

3. Denoting by V an arbitrary arithmetic operator: +, —, X, [/, we can assume
for real operations in fi{g) with well-constructed atithmetic unit the following:
if x,y €X, and z = xVy € X then the computed result, z,, equals rd,(2).

For complex operations we obtain in this case the relation:

lz,— VP < @ k- Iz,
where k depends only on the type of operation (in most cases 1 < k < 6).

[223]
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2. A simple model of a numerical problem

We consider two normed cartesian spaces, the input-data-space Ry and the result-
space R,. Let Ay be an open subset of R; and let us consider a mapping ¢:
Ay — R..

The problem of an effective construction of the element ¢(a) for a given a € 4,
is denoted by {p,a}. We shall call it a single-data problem. The problem of the
effective construction of p(a) foranya € 4 < A, is denoted by {p, 4} (a set-of-data
problem).

- We assume further that if & is the representation of a € A, in fi{e) then the
inequality [la—a] < g4-la| holds, where g; = ¢ k4, ks being a positive number
which depends on 4,, the norm and dimension of R;. We assume, similarly, the
relation

15—Bl < o 18] for  bep(do).
Comments

1. By a “cartesian space” we understand a finite-dimensional space, given as
the cartesian product Rx Rx ... xR, where R is the space of real or complex
numbers. The usual linear operations and usual norm postulates for this space are
assumed.

2. The concept of an “effective construction” can be more precisely explaiugd

by referring to the list of some elementary admissible operations, which in the case
of numerical computation are essentially arithmetic operations. ’
) 3. If R, is a vector space with any Schur norm, then g, = ¢. The same holds
if Ryis a matrix space with 1, oo or E-norm. If we consider the spectral norm
(%-nom.:) then for the set 4, = R, the equality g; = ¢+ }/m halds, (mx m) being the
dimension of R;. Defining 4, as the subset of nonnegative matrices in R;, we have
the equality o4 = g for the spectral norm, too.

3. Finite-method algorithm

Let ¥ be an algorithm which gives for any a € 4 < A4, in a finite number of el-
ementary operations the element x = @(a) € R,. We now consider the accurate
execution of each operation; therefore the computed result, Via], equals @(a).
We define the algorithm ¥, which differs from ¥ in the following:
) (i) all numbets involved in ¥ as data are replaced by their representations
mfd, : . i ;
(i) all ope:raﬁéns in V are replaced by the corresponding f{p> operations.
‘We assume that for-each a € 4 and for each sufficiently small g all operations
of the algorithm ¥, are well defined, i.c. the element X, = V,[a] € R, is uniquely
defined for ¢ sufficiently small. The element x, will be referred to as the solution to
the problem {p;a}, computed in fi{e> by means of the algorithm. V.
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Comments

1. We use square brackets to underline the difference between the algorithmic
relation x = V[4] and the functional relation x = p(a). Note that the expressions
Vila,b,cl =ax(+c) and V,[a,b,c] = axb+axc define in Algol 60 two
different algorithms for the evaluation of the same function.

2. The data involved in the algorithm ¥ consist mainly of input data of the
problem, but may also contain some “own” data of the algorithm. For example,
in the problem {compute the area of the circle with given radius 4} the algorithm ¥
defined by means of the expression V[a] = a®m uses as “own” data the number 7.
Some other algorithms need not use 7 -as data.

4. Infinite-method algorithms

An infinite sequence of mappings {g®@}2;, ¢®: 4y — R,, such that for each
ac Ay, ¢®(a)— p(a) when p — oo will be referred to as an infinite method of
approximating the mapping ¢ on A,.

We assume that for each p, a finite-method algorithm V® solving the problem
{p®, 4}, A = A, is known. We assume that each algorithm V' defines uniquely
for each a € A and for sufficiently small g the element x> = V¥’ [4] € R,. Weassume
further that for each @ € 4 and for each sufficiently small p there exists a positive
integer s = s(a, @) such that the element x, = x{” can be considered as the solution
to the problem {g, a}, computed in fig) by means of algorithms {V®}.

Comments
1. Practical methods of determining the index s = s(@, o) are not discussed
here. Some of such methods are known as “termination criteria”.

5. Well-behaving algorithms (WB)

We call an algorithm ¥ (or a sequence {V'®}) numerically well behaved in a set-
of-data problem {p, A}, 4 = 4,, if there exist numbers K, K, such that for each
a e A and for each sufficiently small o there exists @, € 4, such that the relations -
la—apll < ga- llal - Ka,  lp(@a)—%[ < e lp(al - K

hold.

Comments

1. The WB property of an algorithm is invariant with respect to the norms
considered. However, a change of norms can influence the quantities Ky, K, 04 @r+

2. A WB-algorithm guarantees (provided sufficiently small g is used) to produce
for each single-data-problem {p, a}, a € 4, “a slightly wrong solution to a slightly
wrong problem”, according to Kahan’s postulate, cf. Kahan [4].

3. Tt also guarantees that the computed solution lies close to the “natural
domain” caused by data representation errors, cf. Faddeev, Faddeeva [3].
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4. The numbers K, K, will be referred to as error-accumulation-esimates (EC-
estimates) of the algorithm ¥ for {p, 4}, provided the inequalities in WB  defi-
nitions are sharp. The “asymptotically-statistical” EC-estimates (cf. Voevodin [6])
are EC-estimates for some subset 4, = A such that mes(4—4,;) < mes(A).
5. If @ is continuous in 4, then for each ae 4 we have x, — @(a) whenever ¢ — 0.
6. The sequence of logical quantifiers in the WB definition is:

1K;, K,Vae Ao > 0V o < goda, € 4o.

6. The optimal error-level of the solution

We now assume that for each element a € 4, the mapping ¢ fulfils the local Holder
condition in the neighbourhood of a.

This means that for each a € 4, there exist positive numbers dy, «, H such
that for each & € Ay, if d = Jla—8| < d, then |p(@)—@(@)| < H- d*

The choice of « and H depends to some extent on dj.

To achieve the practical uniqueness of « and H we assume that for each a € 4,
it is possible to choose such d, = do(a) > O that further decreasing of d; can neither
significantly decrease H = H(a) nor increase a = a(a) in the above relations. The
above mentioned class of mappings will be referred to as the x-class.

The sub-class’ of mappings fulfiling the Iocal Lipschitz condition (a = 1)
will be referred to as the A-class.

We define the' optimal-error-level of the solution to the problem {p,a} in
fi{o)> by the expression:

P(p; a, 0) = H@)(ea" alyY @+, lpa.

Comments

1. In order to get some bounds for the error of the solution caused by the re-
presentation errors in the input data, we must assume some regularity of the mapping
¢. The ;a-class seems to. include all mappings involved in the algebraic problems.

2. P(g;.a,0) gives a bound for the sensitivity of the solution x = p(a) with
respect to the representation. errors in the input-data and in the solution itself.

3. The x-~class of mappings is invariant with respect to the norms considered.
However, such a replacement of norms influences eventually the quantities dy(a),
H(a), though the exponent a(a) is invariant for given ¢ and a.

7. The numerical stability of an algorithm (NS)

VAn'alguri»thm v (or a sequence {¥'®}) is said to be numerically stable in a set-of-data

prQbIem {g, A}, if there exists a number X such that for each a € A and for each

sufficiently small e the relauon
lp@—xll <

-y K- P(p;a,p)
,holds whefe x,; =V lal-or x, = x =

5;) [a] .
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Comments

1. The NS-property of an algorithm is invariant with respect to the norm con-
sidered. However, the number K depends on the specific choice of norms.

2. The main idea of the NS-concept is the comparison of the error of the com-
puted solution’ (caused by the combined influence of the rounding errors in the
algorithm and the possible truncation error of the infinite method) with the maximal
perturbation of the solution. This maximal perturbation is caused by pertur-
bations of the input data and the result itself.

The latter are of such order of magnitude as the corresponding representa-
tion errors. This idea was expressed among others by Bauer [2].

3. The number K has a similar meaning as EC-estimates in the WB-concept.
It characterizes the error accumulating property of the algorithm for the considered
set-of-data problem. The quantity

K* = sup lim |p(a)— x,1/P(g; a. @)
agA ¢g-0

is closely related to the quantity w(a, b, L, P) proposed by Babuska ({1], (2.10))
in his definition of the NS-concept.

4. The following, almost trivial, theorem holds: if @ is an »-mapping on A4,
then any WB-algorithm in {p, 4} is NS in {p, 4} with K = max(X,, K,) whenever
o* = maxa(a) > 1, or K = K; whenever «* < 1.

8. The relative error bound and the condition of the problem

Let us assume x = @(q) # O and let x, be the solution computed by a NS algo-
rithm. Then the relation

=, s
i< €@ e X
holds. The quantity
llaf=
C(a) = H(a) E

will be referred to as the condition number of the problem {gp,a}. The quantity
a(a) will be referred to as the condition exponent of this problem.

Comments

1. Both C(a) and «(a) characterize the relative sensitivity of the solution (p(a)
to small relative perturbations in the input data:

lp@-9@I1 _ la— au)"“"
Te@I ()( ar ]

C(a) depends on the specific choice of norms in Ry, R,



GUEST


228 A. KIEEBASINSKI

2. For the Lipschitz case (o = 1) the bound for the relative error can be written
in the form:
[l =, 1l
[E]
which exposes the role of all essential factors: the sensitivity of the problem, the
accuracy of the numerical arithmetic, the error-accumulating properties of the
algorithm.
3. For some problems and some WB-algorithms each element a, in the WB
definition fulfils the relation
lpla)— (@)l < Hia) - lla—a,|*®.

We can refer to this (cf. Wilkinson [7]) as to the specific correlation of the pertur-
bation {@—a,) with the mapping ¢. In such a case we obtain much greater accuracy
in the computed solution than it could be expected regarding the condition of the
problem. In fact, the problem is much better conditioned with respect to such
specific perturbations in input data.

< (Cl@)+1)- max (o4, ) K,

9. Supérilosition of algorithms
Let us consider a normed cartesian space R, and mappings
@1: Ao Bo © Ry (4o = R), @2t By —> R,

such that @(a) = ¢2(¢1(a)) for each @ € Ay. Let ¥, be an algorithm solving the
problem {g,, A}, 4 < A4,, V, an algorithm solving the problem {p,, B}, B = B,,
and let us assume that for each a € 4 for sufficiently small o the element ¥7,[a]
is in B.-We consider the algorithm ¥ solvmg the {p, A} problem, defined by the
relation ¥[a] = Va[Vilal].

The following theorems hold:

1. If ¢, is a »-mapping on B, and the corresponding condition number is bounded:
Cy(b) < C3, b € By, and if the algorithms V,, V, are WB in {p,, A}, {p,, B} with
EC-estimates K{°, K, i = 1,2, respectively, then the algorithm V is WB in {p, A}
with EC-estimates

=K{P, K =KD+EKDP+KP) C,-g,lor
R ¥

2.-Let 91, @; be A-mappings. Assume that the condition for @, is bounded: C,(b)
< C,, b e By, and that the quotient (H1 (@ - Hz((]Jl (a))) [H(@) € G, ae Ay, is bounded
(H, is the Lipschitz constant for g;, H for ¢). If the algorithms Vi, V., are NS in
{91, 4}, {92, B} with EC-estimates K®, K, respectively, then the algorithm V
is NS in {p, A} with the EC-estimate :

k= max(K‘”G, KD+ (KD+KD) C; " gyle,)-
Comment

For a specific class of problsms (including typical linear algebra problems)
a small perturbation in the solution can ‘be always interpreted as a small pertur-
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bation in the input data. If (g;, A} belongs to this class then the superposition
of WB—algonthm is a WB-algonthm in {p, A} without any further assumptions.

10. Equations and residual stability (RS)

A numerical problem can be posed in the form of an equation. Let us consider
a mapping f: A4 < R;xX R, — R,, where R, is linear, normed cartesian space. We
assume that for each a € 4, the pair (a, p(a)) belongs to # and x = ¢(a) is the
unique solution of the equation f{(g, x) = 0 in some neighbourhood of this point.
We will refer to the element r = f(a, %) € R, as the residual element of the approxi-
mate solution X with respect to the equation f(a, x) = 0.

Let us assume that f fulfils in .# the local Hélder condition with respect to a
and x with coefficients H,(a, x), H.(a, x) and exponents a,(a, X), o.(a, x), respectively,
We define the optimal residual level of the equation f(a, x) = 0 by the following
expression :

0fa, x,f,0) = Hua, ) (lall - 0™ + Hx(a, %)~ (Ix] - g,)=>.
The algorithm ¥ is said to be residually stable for the problem {p, 4} with respect

to the equation f(a, x) = 0 if there exists a number K, such that for each'a € 4 and
for suﬁicxently small ¢ the relation

[f(a, )l <
holds (x, = V,[a] or x, = ¥'§? [a]).v

K, Q(a, x,. f, 0

Comments

1. The NS-concept is identical with the RS-concept with respect to the equation
fla,x) = x—p(a) = 0.

2. An algorithm which is WB in {p, 4
which the quantity min/ (oz,,(a qo(a)) o.(a, tp(a))) is bounded in 4. We know some
non trivial examples of equations such that the RS-property unplles the NS-prop-
erty. or .even the WB-property.

} is RS with respect to any equation for

11. A general model of a numerical problem

We consider both the input data space R, and the result space R, in the form of the
cartesian products of cartesian SpaCBS'
"Ry =Ryi%RgsX ... xRa;; R, =Ry %xXRuX ... XRpp.

Provided the spaces Ry, R,, are normed we shall refer to this splitting as to
the structure of the spaces Rz, R, (shortly: Z(Ry, R,)). We denote the correspond-
ing components of the elements of R; or R,, and consequently the components of
mappings or algorithms, by adding the indices. Thus for example @; € Ry, XP

P(a) € Ry, X,; = Vylal € R;; are the components of a, x® = p®(a), X,
= V,[a] respectively: The quantities g4, g,; denote the correspondmg ﬂ(g) charac-
teristic mxmbcrs for the.spaces Ry, Ry
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11.1, WB-algorithms. An algorithm ¥ (or {¥'‘?}) is said to be WB in {p, 4},
A c A, with respect to a structure Z(Ry, R,) if there exist EC-estimates {Kui» Ky},
i=1,2,...,1, j=1,2,...,m, such that for each a € A and for each sufficiently
small g there exists a, € 4, such that the relations:

lar—agl < oa- ol Kais @@= Xl < 0 lpsal - Koy
hold (x, denotes as before the result computed by means of ¥, or {V{P}). .

11.2. Almest well-behaving algorithms (AWB). We shall now introduce a more
general concept. An algorithm ¥ (or {¥'®}) is said to be almost well-behaved in
{p, A}, A © Ao, with espect to a structure Z(Ry, Ry) if for each j=1,2,...,m
there exist EC-estimates {K$, K,;} such that for each a € 4 and for sufficiently
small p there exist a{”? € A,; such that the relations:

lai—a@| < eai-lall - kP
@) = xgill < 0rs " i@l - Koy
hold.

11.3. The optimal error level and NS-algorithms. The #-class of mappings with
respect to a structure Z(R;, R,) can be defined as f(zllows:
@: 4o © Ry > R, is a »-mapping if for each a € 4, there exist positive numbers

{00(@), 2@, Hy(@li-1.7,...1

2,.,m
such that for each @ 4, the implication:

1
i=1

Vd; = la—&i) < doi(@) =V @)~ g;@] < ZHU(‘J) - dou®
H H ”

holds. ¢
The optimal error level should be now defined separately for each component ¢;
of the mapping ¢:

4 .
P(g;,a,0) = 2 Hy@)eas* 10 + gy oy (@)l

An algorithm is said to be numerically stable in {p, A}, with respect to a struc-
ture Z(Rq, R,) if there exist numbers K; such that for a € 4 and for each sufficiently
small p the relations:

loi@)—xull < K- Plg,a,0), j=1,2,...,m,
hold. '

11.4. Relative exror bound and the condition of the problem. If x; = ¢;(a) # 0
then the bound for the relative error of the solution x,; computed by means of an

©
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NS-algorithm can be written in the form

I3
Bl < k- (3Cut@  r e e
where
NIETO]
Cul@ = Hiy(@ ”L"',‘;j—l}

is the condition number for the problem {g;, A} with respect to the ith component
a; of the input data. (x; = @;(a), X; = V,;lal)

Comments

1. The structure of the spaces Ry, R, is in practical problems determined to
some extent by the meaning of the information contained in the input data and the
result. There remains, however, some freedom in applying a more or less refined split-
ting into components and in the choice of one or another norm in each component.
It is possible to define the concept of equivalent structures of a given pair Ry, R, (and
of equivalent substructures) in such a way that the properties of WB or NS for al-
gorithms, »- or A-class for mappings remain invariant under the replacement of a
given structure by an equivalent one.

2. Several further concepts (as e.g. the RS-concept) or theorems can be extended
to the case of a general numerical problem. For example:

An AWB-algorithm in {p, 4} with respect to a structure Z(Ry, R,) is NS in
{p, A} for each equivalent substructure. For the same structure the EC-estimates
are K; = max(max(Ky), K;)- )

i

3. Let us consider matrices A (kx1[), B(Ixm), C = A4- B.If we introduce the
structure X2 Ry = Ryy X Raz, Rey A€ Ry, BERy,, CER, with the euclidean norm
in Ry, R, then the “patural” algorithm of matrix multiplication is only NS in
{p, Ry} with respect to this structure. (It is neither WB nor AWB for X,.) Con-
sidering E}}e structure X,: Ry = Ry X RizX ... XRg mi1, R = RoyX ... X R,

- AeRy,bjeRyjy1, E; € R,_,-,-b}, E} being the columns of the matrices B, C respect-

ively, and introducing the euclidean norm in each component space, we find out
that “natural” algorithm for multiplication is AWB in {g, R} with respect to the
structure X,.
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‘We consider the problem of solving a system of nonlinear equations

m fe) =0

for f: D - C", where C" denotes the n-dimensional complex space and D is an open
and convex set in C". We assume that f satisfies the following two conditions,

(i) there exists a simple zero o« = a(f) e D;

@) (ii) f'(x) is a Lipschitz function in D.

We solve (1) by the multivariate secant method—shortly the MS-method—defined
as follows. Let Xx;, ..., X;, € D be approximations of o«. If the matrices

X; = [6x;-n; .-\ 6xi—1]: F = [af;—na vy Ofial,

where 0x; = x;49—%;, 8fj = fj41—fj, f; = f(%)), are nonsingular then the next
approximation of « in the MS-method is given by the formula:
3 zy = Qe f) = x —X; - Fit- fi.
We can put x;;4 = z; or define x;,, otherwise.
The problems of our interest are,
(D) the convergence and the character of convergence of the MS-method,
(ii) the numerical stability of a chosen algorithm of the MS-method.
For the first problem. we got the following result. Let us define

Ox;_ 0x;
d; = |det —-__—“l-ll d; < 1),
i [uaxmn Toxoa) @<P
@ M(e, E) = {(X,,, Xp—gs ey Xo)? xjeC", d,
where £€ [0, 1), ce (0, 1].

2 clxa—xoll%},

[233]
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