232 A. KIEŁBASIŃSKI

- [4] W. Kahan, A survey of error analysis, IFIP 1971, I, pp. 200-206.
- [5] J. Stoer, Einführung in die numerische Mathematik I, Springer Verlag, 1972.
- [6] V. V. Voevodin, Rounding errors and stability (in Russian), MGU, Moscow 1969.
- [7] J. H. Wilkinson, Rounding errors in algebraic processes, London 1963.

Presented to the Semester Mathematical Models and Numerical Methods (February 3-June 14, 1975)

BANACH CENTER PUBLICATIONS VOLUME 3

MULTIVARIATE SECANT METHOD

JANINA JANKOWSKA

Institute of Informatics, University of Warsaw, Warsaw, Poland

We consider the problem of solving a system of nonlinear equations

$$f(x) = 0$$

for $f: D \to C^n$, where C^n denotes the *n*-dimensional complex space and D is an open and convex set in C^n . We assume that f satisfies the following two conditions,

- (i) there exists a simple zero $\alpha = \alpha(f) \in D$;
- (ii) f'(x) is a Lipschitz function in D.

We solve (1) by the multivariate secant method—shortly the MS-method—defined as follows. Let $x_i, ..., x_{i-n} \in D$ be approximations of α . If the matrices

$$X_i = [\delta x_{i-n}, ..., \delta x_{i-1}], \quad F_i = [\delta f_{i-n}, ..., \delta f_{i-1}],$$

where $\delta x_j = x_{j+1} - x_j$, $\delta f_j = f_{j+1} - f_j$, $f_j = f(x_j)$, are nonsingular then the next approximation of α in the MS-method is given by the formula:

(3)
$$z_i = \varphi(x_i; f) = x_i - X_i \cdot F_i^{-1} \cdot f_i.$$

We can put $x_{i+1} = z_i$ or define x_{i+1} otherwise.

The problems of our interest are.

- (i) the convergence and the character of convergence of the MS-method,
- (ii) the numerical stability of a chosen algorithm of the MS-method.

For the first problem we got the following result. Let us define

$$d_i = \left| \det \left[\frac{\delta x_{i-n}}{\|\delta x_{i-n}\|}, \dots, \frac{\delta x_{i-1}}{\|\delta x_{i-1}\|} \right] \right| \quad (d_i \leqslant 1),$$

(4)
$$\mathfrak{M}(c,\xi) = \{(x_n, x_{n-1}, ..., x_0) \colon x_j \in C^n, d_n \geqslant c \|x_n - x_0\|^{\xi} \},$$

where $\xi \in [0, 1), c \in (0, 1]$.

Then we have

THEOREM 1. Let

- (i) f satisfy (2),
- (ii) $x_0, ..., x_n \in D$: $||x_n \alpha|| \le ||x_j \alpha|| \le ||x_0 \alpha||, j = 1, ..., n 1$.

If $\forall i \geq n$, $(x_i, ..., x_{i-n}) \in \mathfrak{M}(c, \xi)$ for fixed $\xi \in [0, 1]$ and $c \in (0, 1]$, then for sufficiently small $\|x_0 - \alpha\|$ we have:

(i) the sequence $\{x_i\}_{i=0}^{\infty}$, where $x_{i+1} = \varphi(x_i; f)$, is well-defined and satisfies $\|x_{i+1} - \alpha\| < \|x_i - \alpha\|$ and $\lim_{t \to \infty} \varphi(x_i, f) = \alpha$,

(ii)
$$||x_{i+1} - \alpha|| \le \frac{K_1(f)}{c} ||x_{i-n} - \alpha||^{1-\epsilon} ||x_i - \alpha||$$
, where K_1 depends only on f .

One can prove that the inequality (ii) is sharp. Hence, if all succesive points $(x_1, ..., x_{i-n})$ are in a good position, i.e. if they belong to $\mathfrak{M}(c, 0)$, then the order of convergence p_n of the MS-method is equal to the unique positive zero of the polynomial $t^{n+1}-t^n-(1-\xi)$.

The order $p_n(\xi)$ is a decreasing function of $\xi \in [0, 1)$, $\max p_n(\xi) = p_n(0)$. The results due to Bittner [2], Barnes [1] and probably others (see Ortega-Rheinboldt), involve the case $\xi = 0$.

We know that the assumption of good position of the points (x_1, \ldots, x_{i-n}) is necessary for any iteration which uses the same information on f, see Woźniakowski [7]. Furthermore, it is possible to prove that the MS-method makes the optimal use of the information on f with respect to $\mathfrak{M}(c, \xi)$ and the order $p_n(\xi)$ is as high as possible.

From this theorem it follows that any algorithm of the MS-method should involve a certain control of the d_i values. If d_i is too small, one has to redefine the points (x_i, \ldots, x_{i-n}) to ensure that the new d_i is sufficiently large. For instance, if $x_{i-1} = x_{i-j+1} + e_j ||f_i||$, e_i the jth axis unit vector, $j = 1, 2, \ldots, n$, then $d_i = 1$.

As regards the second problem, our result concerns the case of $\xi = 0$ and the following algorithm of calculation of the z_i from (3) in t-digit, floating point arithmetic fi, is proposed.

A-algorithm

$$z_i$$
: $F_i \cdot z_i = f_i$;

Here it is assumed that we use a numerically well-behaved algorithm for the solution of the linear system satisfying the following condition. If w_i is the computed solution in fl-arithmetic then there exists a matrix E_i such that

$$(F_i + E_i) \cdot w_i = f_i$$

and for every column E_i^i of E_i

$$||E_j^i|| \leqslant 2^{-t}K_E \cdot ||\delta f_j||.$$

 $p_i := X_i \cdot z_i;$ $x_{i+1} := x_i - p_i;$ We also assume that f depends on a so-called data-vector $d \in C^m$: f(x) = f(x; d), and the computed value of f in fl-arithmetic satisfies

(5)
$$\mathrm{fl}\big(f(x;d)\big) = [I - \varDelta f(x;d)] \cdot f(x + \varDelta x; d + \varDelta d), \quad \forall x \in D,$$
 where

$$\|\Delta f(x;d)\| \le K_t \cdot 2^{-t}, \quad \|\Delta x\| \le K_t \cdot 2^{-t} \cdot \|x\|, \quad \|\Delta d\| \le K_t \cdot 2^{-t} \cdot \|d\|$$

and the nonnegative constants K_t , K_x , K_d do not depend on x, d or t.

(Condition (5) means that the algorithm used for the evaluation of f(x) is well-behaved. See Kiełbasiński [5] and Woźniakowski [8].)

We consider a system of nonlinear equations

$$(6) f(x;d) = 0,$$

where the data-vector d belongs to a close neighbourhood S of d_{α} .

We assume that for every $d \in S$, the system (6) has a simple zero $x(d) \in D$ and $x(d_{\alpha}) = \alpha$. One can prove that for a sufficiently regular function f the condition number for the equation (6) is given by the formula

$$\operatorname{cond}(f;d) = \|[f'_{\mathbf{x}}(\alpha;d_{\alpha})]^{-1}f'_{\mathbf{d}}(\alpha;d_{\alpha})\| \frac{\|d_{\alpha}\|}{\|\alpha\|},$$

which means that

$$\frac{\|\alpha - x(d)\|}{\|\alpha\|} \leqslant \operatorname{cond}(f; d_{\alpha}) \frac{\|d_{\alpha} - d\|}{\|d_{\alpha}\|}, \quad d \in S.$$

The next theorem explains the properties of the numerically computed sequence $\{x_i\}$.

THEOREM 2. Let

(i) f have the above properties.

(ii)
$$x_0, ..., x_n \in D$$
: $||x_n - \alpha|| \le ||x_i - \alpha|| \le ||x_0 - \alpha||$ for $j = 1, ..., n-1$,

(iii)
$$x_{i+1} = \text{fl}(\varphi(x_i; f))$$
—computed by the A-algorithm.

If $\forall i \geq n$

$$1. (x_i, \ldots, x_{i-n}) \in \mathfrak{M}(c, 0),$$

$$2. \min_{0 \le j \le n-1} \|x_{i-j} - x_{i-j+1}\| \geqslant 2^{-t} \frac{K_2}{c} \text{ cond } (f; a), K_2 = K_2(n, K_x, K_d, K_f) > 0,$$

then for sufficiently small $||x_0 - \alpha||$ we have:

(i)
$$\forall i \geq n$$
 $||x_i - \alpha|| \leq ||x_0 - \alpha||$,

(ii)
$$\limsup_{t\to\infty} \frac{\|x_t-\alpha\|}{\|\alpha\|} \leqslant 2^{-t} \frac{K_3}{c} \operatorname{cond}(f;d)$$
, where $K_3 = K_3(n, K_x, K_d, K_f, K_E)$ does not depend on 2^{-t} .

The inequality (ii) means numerical stability of the considered algorithm (cf. [8]). Note that the good choice of the constant c is very important from the practical point of view. For a small value of c the point (x_1, \ldots, x_{l-n}) belongs to $\mathfrak{M}(c, 0)$ with large probability. But $||x_l - \alpha||$ is directly proportional to 1/c and for small c

icm[©]

it has a bad estimate. The problem of the optimal choice of c is, to our best knowledge, still open.

For a detailed discussion and the proofs of the presented and other theorems see [3] and [4].

References

- [1] J. G. Barnes, An algorithm for solving nonlinear equations based on the secant method, Computer Journ. 8 (1965).
- [2] L. Bittner, Eine Verallgemeinerung des Sekantenverfahrens zur naherungsweisen Bererchnung der Nullstellen eines nichtlinearen Gleichungssystem s., Wiss. Z. Techn. Univ. Dresden 9, 1959/60.
- [3] J. Jankowska, Multivariate secant method, Ph.D. thesis, University of Warsaw, 1975.
- [4] —, The theory of the multivariate secant method, pending for publication in SIAM Journ. Numer. Anal.
- [5] A. Kiełbasiński, Basic concepts of rounding error analysis in numerical methods of linear algebra. Matematyka Stosowana 4 (1975), pp. 5-27.
- [6] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equation in several variables, Academic Press 1970.
- [7] H. Woźniakowski, Generalized information and maximal order of iteration for operator equations, SIAM Journ, Numer, Anal. 12, No. 1, pp. 121-135.
- [8] —, Numerical stability for solving nonlinear equations, Computer Science Department report, Carnegie-Mellon University, Pittsburgh, Pa., 1975.

Presented to the Semester

Mathematical Models and Numerical Methods
(February 3-June 14, 1975)

em par pel la **cost d**e la cost de la respecta per la cost de la costa del costa de la costa de la costa de la costa del costa de la costa

BANACH CENTER PUBLICATIONS VOLUME 3

МЕТОДЫ ПЕРЕНОСА ДЛЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С ПОЯСНЫМИ МАТРИЦАМИ

ЛЮБОР МАЛИНА

Университет им. Коменского, Институт Прикладной Математики и Вычислительной Техники, Братислава, Чехословакия

1. Введение

Пусть заданная краевая задача

(1.1)
$$y''(x) = f(x)$$
 для $x \in (a, c)$,

$$(1.2) y(a) = \alpha, y(c) = \beta,$$

где y''(x) значит вторую производную от функции y в точке x. Численно можно эту краевую задачу решить, например, заменой производной на конечную разность. Значит, пусть $x_i=a+ih$, где $h>0,\ i=0(1)N$ и $x_N=c$. Тогда

$$y''(x) \approx \frac{y(x_i+h)-2y(x_i)+y(x_i-h)}{h^2}$$

и уравнение (1.1) заменяем в точке $x = x_i$ уравнением

$$(1.3) v_{i-1} - 2v_i + v_{i+1} = h^2 f_i, i = 1(1)N - 1,$$

$$(1.4) y_0 = \alpha, y_N = \beta,$$

где $v_i \approx v(x_i)$.

Т.е., вместо задачи (1.1)–(1.2) мы решаем систему линейных алгебраических уравнений (1.3)–(1.4), которую формально запишем

$$(1.5) Ly = f,$$

где L есть тридиагональная матрица, $y = [y_0, ..., y_N]^T$ есть вектор незнакомых, размерности N+1 и f есть вектор правых частей, размерности N+1. Систему (1.5) можно решать, например, процессом элиминации Гаусса. Если мы корошо отдаем себе отчет в нем, то прямой ход процесса элиминации обозначает, что мы постепенно оформляем тридиагональную матрицу L на бидиагональную верхнюю троеугольную матрицу D. Диагональные элементы этой ма-