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Introduction

Anyone involved in the general field of Computational Physics will almost certainly
from time to time during his career seek an optimized, efficient direct numerical sol-
ution to Poisson’s Equation. This problem arises anytime we seek to determine the
value of a potential field, g, (electrostatic, magnetic, hydrodynamic, or gravitational)
generated by a known distribution, p, of “sources” (charges, currents, vortices, or
masses). In each case, we must solve an equation of the form:

2 2 12
0)) e = —gx;f + —%{—2’1 + —g—;— = —47p(x,y, z).
The accurate determination of the values of ¢ over a given region of space in which
o has been specified is generally difficult and time-consuming. As we pursue the ob-
jective of minimizing the execution time of our overall simulation of a given physical
system, we almost invariably find that the problem of efficient Poisson-Equation-
solving becomes our most serious obstacle. It is, therefore, to this problem of efficient,
direct Poisson-solving that this presentation is dedicated.

Our Computational Plasma Physics Group at Stanford University has gained
extensive experience in this area. In particular, Professor Oscar Buneman, the head
of our group, has developed two techniques which have been found to be optimally
effective. The first is called the Double Cyclic Reduction (DCR) technique and should
be used whenever limited computer core size is a serious consideration. The second
is called the Grid-Insensitive Accurate Space Derivative (GIASD) technique and
should be used where optimized accuracy for a given speed is of primary consider-
ation. : '

Naturally, there exist many other proven Poisson-solvers. For example, many
computational physicists still use iterative techniques, such as the Successive Over-
Relaxation (SOR) method ([1]). We, however, have found these iterative techniques
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to be generally inefficient and frustrating. In addition, there are a number of other
direct techniques. One of the most famous of these is Roger Hockney’s Fourier Anal-
ysis-Cyclic Reduction (FACR) scheme ([2]).

To illustrate the DCR and GIASD techniques, we shall examine only the two-
dimensional Poisson’s Equation over a rectangular region. Our presentation shall
be divided into three major sections. First, we shall explain the Double Cyclic Re-
duction scheme. Next, we shall look at the details of the Grid-Insensitive Accurate
Space Derivative scheme. Finally, we include an Appendix which explains how to
deal with non-rectangular regions-of-interest and which illustrates the subtlties of
the “cubic splines”. (These “cubic splines” play a vital role in the GIASD scheme.)

. The double cyclic reduction scheme

To begin with, we assume that we are given an arbitrary source distribution, ¢(x, y),
defined over a rectangular, two-dimensional region. The discreteness of our numeri-
cal methods demands that we deal only with the values of ¢(x, y) which fall on
a regular two-dimensional grid. This leaves us with an array of values, gy,,, of the
form:

[e—h —]

Gi-1,j-1 Qi-1.j Qi-1,j+1

T
h
= 01,5

01,j-1 Qi,j+1
Qi+1,j-1 CQi+1,j Qi+1.j%1

The finite-difference Poisson’s Equation for the determination of a correspond-
ing g;, ; array over the mesh is usually written in eithera 5-point or a 9-point form.
The 5-point equation reads:

@ @it T Pimt, P e T Prer, = Ay = —4nher,

while, in the 9-point scheme with fourth-order error, Kantorovich and Krylov [3]
have derived*

B g0 e P, e TP, P, o T
+@io1,jo1 40y, ;—209;

2
= 6}12{(72¢){,‘1+ % [VZ(VZ(P)]U}

2
= —6h’{4ﬁ91,1+ % [172(4750)]1,1}-

These may be re-written respectively in the more illuminating schematic forms:
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(4b) 4 =20 4{.|p— == Fp| > —4r{o|.
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Through the late 1960’s, the concept and processes of Cyclic Reduction were
extensively analyzed by Buzbee, Golub, and Nielson ([4]-[6]). This scheme was
combined with the powerful Fast Fourier Transform by Roger Hockney in his
Fourier Analysis-Cyclic Reduction (FACR) technique. In 1969, Professor Buneman
carried Hockney’s reduction scheme to its logical extension by devising the Double
Cyclic Reduction (DCR) algorithm ([7]). Compared to FACR, this scheme results
in a dramatic reduction in the size of the Poisson-solver’s object code on the com-
puter. This is, of course, an extremely important consideration when we are working
on a computer with a very limited storage capacity.

Five-point DCR

For ease of representation, we shall consider each row of our mesh to be a vector
quantity, as in (4) above. We designate the source (or “charge™) vectors as (3o);
and the potential “vectors” as ¢;. An odd number, N+ 1, of the rows are assumed
on our over-all mesh and it is further assumed that @, , Py, and all (3,) are known,
The finite-difference Poisson’s Equation (4a) relating the §; to the (3,) becomes:
® Bo1— Toy+Be1 = Gol
where T, is the tridiagonal matrix with coefficients {—1,4, —1}.
The essence of cyclic reduction is illustrated by looking at the three successive
equations:
Pi2—ToPrat & = (So)j-1,
B~ To®+ P = (o)
@i— Toaju + P2 = @Fodprr-
Multiplying the top and bottom equations from the left by T, and adding the three
together yields a new set of equations relating all of the even rows:
(6) Froa—TaF+ Pz = Gu)
where we have defined:
Fy = F3—2f = (FamFY2) (T +TV/3)

[i.e. —2 factors, f’o—chos( Odjn

)] and

@)y = fo@o)j"’@o)j—: +Bo)jz1-
This process may then be repeated recursively to obtain equations of the form:

O Pj_ak— f‘k_q‘b' +Ppazk = Gu)
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with
Typy = Tp-21

[i.e. —2%1 factors, f‘.,—chos( ST )] and

Grer = TG )+ G2k + Sy 2%
fork =0,1, ..., (log,N—1), where k is called the “level” of the reduction.
The appearance of the cosine terms in the central coefficients of the tridiagonal
matrices is a very interesting phenomenon. It would seem to indicate some type of
. link with Hockney’s Fourier technique but no such link has been analytically derived.
This remains to be investigated.
Of course, the objective of this reduction technique is to obtain the equation;

® Fo—TxBr+ Py = Gl
where J = N/2 (i.e. the index of the central row), K = log,N—1,

This equation specifies the unknown potentials of the central row in terms of

the known “source” array and the known boundary row potentials. Having deter-
mined these central row values, we may then reverse the reduction process and fill
in the unknown row “vectors” in successive steps by applying the formula:

® . ‘PJ = Tk (jear+ ;- 2*—Gw))
for k = (log, N=1), .. :

The operation seems vcry neat and clean, but it is 1mportant to note that the
central coefficient of T} grows very rapidly with each reduction step and is of the
order 42%, It is therefore advisable to use a IeVlsed form of the recursion relation
which involves multiplications by the inverse of Tk instead of by T itself. Underflow
rather than overflow then occurs, but this presents no problem since most computer
systems automatically replace an underflowed number with an exact zero and then
proceed with the calculations.

This revised procedure involves the formation of the variable:

10 Geedy = T RGO — Geetdior— Geoa)yert

+ (Ek)j-—z.r'*' Gy 20— G j-3r— G- Dye3rl +

+ [ = Gr i r — Gim )yt G-z + G)ye2r]
for k=1,..., (log,N—1) and r = 21 with

Gy = T5* REo)1+ [Go-1+Go)us]  for k=0
at each level of the reduction. The unknown potentials at each level are then given by:
(11a) @ =1Iy! [@iar+ Pz — GI—HGrs)jr+ Gr=lyr— Gl
for k = (log,N—-1), ..., 1 and r = 251,
For k = 0, we use the original equation

(11b) F =I5 g, +@55.1= Go)]l-
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Nine-point DCR

Approximately a year and a half ago, Ellen Holden, who was then a graduate
student in our research group at Stanford, undertook the task of uniting the compact,
efficient DCR method to the superior accuracy of the 9-point basic finite-difference
algorithm (Eq. 3). The program which resulted from her work was published in March
of 1975. What follows is a brief overview of those results [8].

In matrix form, the 9-point Poisson scheme may be written as:

AT P1 31“
T4T 0 (2% I A
12) T /{-T ) P3| _|4s
T L .
o .- T}l
T Aflev] Lawd
where
‘I’l,i—1
. Pa.i
P =] Ps.i |»
P, i

i.e,, the potential at each mesh point in the ith column,

2
(o - m)

1,1
U = h? :
2h*
(V2<p+ ar l7“ga)M’i
20 4, 0 4 1, 0
i 1 420.'.‘.' i 7 1.4, .
= .. P an = s
%1 0. 20 4 6K 0 41
"4 20 bawar 1 4 hrxm

and where N = total number of mesh columns, M = total number of mesh rows.
If we now define . '
q = 4mp

"and use a five-point discretization of P2, then the basic equation which we wish
to solve is:

. h?
(13) [8 points —20¢;, ;] = 5 [84i,;+ Gisr, i+ Gims, ;4 @i, jaa + i, 5-1]-
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Paralleling the analysis used in Buneman’s 5-point DCR scheme, we write:
44"‘_;51 + f¢2 =1y,
(14) TP+ Agy+ TGy =, for j=2,3,..,r—1,
TG+ A¢, =8, for r=251_1,

where k is the total number of cyclic reductions which will be performed. Multiplying
through by T in equations (14) from the left yields the first reduction level:

Pjat [2f,—(f“x‘1~)’]¢1+¢j+ = T + 7~ Uy — (T_llf)fﬂlﬁj
where j=2,4,...,r—1 and Go =@y = G, I, = the identity matrix of order s,
s = the number of interior mesh rows. i
Now define
P=T"14
and
@y); = T3 1+T ui+1"‘PT %;

Bif-ig 4 T, 4+ T, ,— 201715,

"m

where P, = 21, P2.
If we further define:

and
(&) = i—lﬁj—l+f_xﬁi+1_2(ﬁl)f
then -
@) = PyG+ @)y for j=2,4, s =1

so that:

Proot P G+ Gpa = Gy for j=2,4,..,r—1

= ﬁx@z)ﬁ‘*‘ @l)jv

Similarly, after “n> reductlons, we have:
(13 Fr-2mt Po Gyt Pruon = ﬁu@n)j'*‘ ()
where

J=m2" and m=1,2,.., 2]
where:

 B=2-Gy,
@n)j = Gsn 1)_{ n—1[@u-—1)j 2"1+@n 1)_r+2"“1_ @u 1)1]’

&) = Gr-j-rm1+ @ —Dje2n1—2(Ba),

with

Br-1)o = Br-dgrsr = Er-1)o = @p)grer = 0.

The remaining steps of the solution process parallel those of the five-point
. DCR scheme above. We shall not Tepeat these details.
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Grid-Insensitive Accurate Space Derivative method

When one is dealing with the problém of simulating a plasma, the work is divided
into two major sections. First, given an initial charge/plasma distribution, we must
solve Poisson’s Equation to determine the electric potential on a given array of grid
points. Knowing our potential function over the region-of-interest, we then interp-
olate between the known values to determine the slope of the function (i.e. the
electric field) at the positions of our individual charged particles. It is, of course,
this value of the electric field at the particle’s position which gives us, via the Lorentz
Law, the force acting on the particle. In this manner, we know how to move the indi-
vidual particles over the given time-step.

As a general rule, significantly more computing time is required to Poisson-
solve for the value of the electric potential at a given data point than is required for
field and force calculations for each particle. It is, therefore, generally desirable to
use a coarse mesh for Poisson-solving, while employing a considerably finer grid
for spec1fymg particle positions. The question of precisely #ow coarse a Poisson
grid we should employ for optimal efficiency, is answered by considering the total
number of charged particles we are using in the simulation. If we are working with
a very large number of particles, then the cost of interpolating electric field values
to each particle position could well outweigh the cost of simply using a finer Poisson-
grid with a more simple, low-order particle-moving scheme.

This highlights an important point; in the final analysis, our major interest is
to determine the slope of the potential function at the particle positions. Poisson-solv-
ing over a fixed, regular grid is an artificial, intermediate step. Our Poisson-solver
should therefore be designed for optimal ease-of-transition to random electric field
interpolations. This was the primary consideration which led to the development
of the Grid-Insensitive Accurate Space Derivative (GIASD}) technique [9].

The essence of GIASD rests in the use of cubic “splines” (see Appendix II) for
distributing the charge over the Poisson-grid and for interpolating the electric field,
combined with the use of Fourier Analysis to actually carry out the Poisson-solving.
This combination results in an extremely accurate, straightforward technique.

The heart of this method, namely its use of Fourier harmonics as the working
basis functions, is derived from the Accurate Space Derivative (ASD) technique
developed by Dr. Jeno Gazdag of the IBM Research Center in Palo Alto, California.
We use Fourier harmonics for the following reasons:

1) They guarantee that our approximated functions will have infinite smoothness.
All derivatives are continuous and interpolation will be efficient.

2) There is translational invariance. This implies that the results do not depend
locally on whether a particle is on a grid line or somewhere in between because, in
reality, there is no longer any grid. .

3) The harmonics are orthogonal and remain separable in terms which are
quadratic. This is an important consideration when one is using an Action Principle
to derive the working equations of the physical system.
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4) Electrodynamics is traditionally analyzed in Fourier space.
5) Differentiations become multiplications by k. and k,.
6) If the cut-off of the spectrum is made according to the magnitude Jk| = Koy
of the k-vector, then the function representation in real space will be locally isotropic.
Our method of procedure for implementing GTASD may be described as follows.
First, we are given a distribution of charges at the locations. Normally, our first
concern is how to directly distribute these charges onto the given Poisson-solving
grid. However, since we are Poisson-solving in Fourier space, this does not concern
us now. Rather, we immediately Fourier transform the charge distribution to ob-
tain the charge coefficients, N

a = ZCXP(_EC?M)-
"

Now, to preserve isotropy in real space, we introduce the isotropic “form-factor”,
P([%)) to obtain, instead:

(16) ¢ = P(E) D exp(~ik- 7).
n
The question now arises as to what shape>our form-factor, P(|76'|), shall take. If we
were to let P = (2 then the transform into real space would yield charges with cross-
sectional density profiles in the form of sinc functions:
Fig. 1
This is undesirable because this endows all of our charges with negative “haloes™,
and an attenuation only like 1/r (from the center). (Thus, the attenuation of the
charges would be as weak as the attenuation of the potential fields which the charges
create.) After some experimentation, it appeared that we should make P gaussian
in form:
P = exp(—LR%k?).
This transforms in real space into another gaussian
exp(}r?/R?)
which is an aesthetically pleasing distribution cross-section to give to our charges.
In practise, ease-of-calculation dictates that we use the bell-shaped cubic spline
curves for P instead of using strict gaussians. (N. B.—Coincidentally, the cubic spline
curve is the curve which represents the 4-random walk statical distribution function.)
This curve transforms in real space to a very similar curve which has only smail

positive “haloes”, the first of which has a height only one-five hundreth that of the
center peak. These haloes are attenuated like (1/r%), which is very desirable.
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Having chosen a P(II?]), our charge distribution transformation is coﬁ1p]ete

and we are ready to attack Poisson’s Equation. In Fourier space, this is very easy.
The equation reduces to simply:

an Kgp = gz = P(R) D exp(—ik-F,).

The only annoying aspect of this equation is the prospect of having to evaluate the
quantity
exp(— ik )
for every particle position, 7,, at every time step. To avoid this, we call upon our
friends, the cubic splines, and use the approximation
[x]+2

exp(ikn) & ). gSi(x—J),

J=Ix]—1
where [x] is defined as the largest integer contained in x. For this expression (18),
we have the recurrence relation
19 gi-1+4g;+8141 = 6exp(ikj).
This formula (19) is solved by

(13)

_ 3exp(iky)

(20) & = Trcosl)

So that we are left with

3exp(7Ss(x 1)

@ 2+cos(k)

exp(ikx) =~

Plugging equation (21) into our Poisson’s Equation (17), we obtain in two-dlmensmn-
al form
9P(K) o
(24 cos(kx) ) (2+cos(ky)) Z Z exp(— ik j—~ikyn)x .
J n
x Z S3(x,—7)Ss(y,—n)
B

= [...] times the discrete Fourier Transform of the charge array.

@

kipp =

Given the Fourier components of our complete potential function, we might
be tempted at this point to blindly push ahead and back-transform to obtain the
real @ function values on the given array of data points and then be left to worry
about putting together an interpolation technique to obtain values between grid
points, at the positions of the charges. Instead of this, let us pause for 2 moment to
consider the situation. Qur ultimate objective is to calculate how our charges move
during a given time step. For this, we need the values of the electric field, EC 7,), at
the charge pos1tlous, 7. If we have E(” 7.), then we need merely apply:
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5 ')
Ty = 7" EF)-
But, in one-dimension .

E(x,) = — —?-‘p—

. *u
Since we have Fourier analyzed ¢, we have

E = ) iky P, oxp(— i x,)
J

which, upon again employing spline interpolation to the harmonics, becomes

3exp(ik;n)
2 +cos(k;)

- zw L2

= ZZikj {@ese b, 6xp (isn) - S3(x,—1).

From equation (23), we may say that the Fourier components of the spline coeffi-
cients of the effective potential are simply

”( 3p )( 3P )
{@ece Ity = 2+cos(ky) [\ 24 cos(ky) 7

=( _9P(k)) ) «
k(2-+cos(ky) )(2+cos(k,))

23) E= S“ iy P(ky) o, - 85 (e, — )

D)

The discrete Fourier
Transform of the
charge array

If we now take the discrete Fourier synthesis of these Fourier components:
Z Z {pete i exp(iks j+ ikeym)
FE

what we obtain are then the effective real-space potential coefficients for the com-
plete array of cubic splines centered on each interpolation grid point. We may pre-
tabulate the slopes of the splines to whatever degree of resolution we desire. Thus,
the knowledge of these potential spline coefficients affords us a very quick, direct
method for determining the electric field at a given charge location. This, in turn,
tells us how to move the given charges. This completes our simulation for an indi-
vidual time step.

We outline the complete procedure again as follows:

1) We are given an array of charges in real space.

2) We assume that each charge has a density distribution in the shape of a cubic
spline.

3) Now execute a finite Fourier analysis of this shaped-charge array.
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4) Solve Poisson’s Equation in Fourier space. This entails the formation of
the Fourier components of the spline coefficients of the effective potential by multi-
plying each charge coefficient by
( 9P()) )2
k(2+cos(ky))(2+cos(ky))|
5) Execute a finite Fourier synthesis of these products to obtain the complete
array of cubic spline coefficients for the e/fective potential.

6) Apply direct spline interpolation to determine how to move the charges to
their new positions for the next time step.

Appendix I— Treatment of irregular boundaries [10], [11]

It is important to note that both DCR methods are designed for the solution of
Poisson’s Equation over a rectangular grid with straight rectangular boundaries,
over which boundaries the potential is known. However, irregular, non-rectangular
boundaries can still be dealt with using DCR if we simply introduce the straightfor-
ward device of employing a “Capacitance Matrix”. This is accomplished as follows:
Suppose we are given a boundary (normally an electrically-conducting bound-
ary) over which the potential is specified: .

Fig. 2

= (@), at N points along the given boundary.
Inside the boundary, there is a given, known charge distribution. Our first step
is to surround the given boundary with a rectangular boundary as tightly as possible:

pseudo-boundary.

Fig. 3

We place no charges between the two boundaries. Now we use any direct method
to solve the problem with the given g¢’s, ignoring the real irregular inner boundary.

Next, we compare the ¢’s thus calculated for the N points on the inner boundary
with the given values of ¢ and make a record of the N differences:

Agy, Apy, Ags, Apa, ..., Agn.
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At this point, we calculate the matrix, B, whose elements, Py, are the poten-
tials at the kth inner boundary data point which is created by placing a unit charge

on the 7th inner boundary data point. The “capacitance matrix”, d is then

¢ =p-u
Thus, the creation of this matrix requires N Poisson Equation solves and one matrix
inversion. Now we calculate the effective charges, gi, given by

qi = kZ Cadyy

which must be placed at the inner boundary data points to make ¢ = ¢, where
required. Now, we solve again; this time using the outer rectangular boundaries,
but leaving the g; in place over the inner boundary. The solution thus obtained is
valid everywhere inside the inner boundary.

Thus, for each time step, the Ag,’s and, from these, the ¢}’s must be recalculated.
The original “capacitanice matrix”, however, need only be calculated once, at the
beginning of our computer run, and then used throughout the rest of the problem
(assuming no boundary deformation).

Appendix II — Cubic “splines”

The function which we define as a cubic “spline”, may sometimes be referred to by
other authors as cubic “shape function” or as a cubic “interpolant”. Whatever the
name, we specify it by the equation:

2-4x2Q—x) for |x|<1,
S3(x) =15 Q2~|x])? for 1<|¥<2,
0 for  2<|x],

where the l.}nit ‘of length in x is defined by the spacing between grid data points.
The curve is pictured in Figure 4 below.

Fig. 4

icm

NUMERICAL SOLUTION OF POISSON’S BQUATION 267

In GIASD, these splines are used to approximate Fourier harmonics. It is, there-
fore, important to see just how well they do behave as sinusoid interpolants. Such
a test has been completed and two examples of the results are pictured below. In
the first case (Figure 5), a data point spacing of 57/6 is used. We see that the splines
soften the erratic nature of the function and refuse to swing out as far as the pure

-

Fig. §

sinusoid fitted through all the data points. On the other hand, if we space our data
points-by /2 and specify them at the extremes and node points of the sinusoid, then
the true curve and the interpolated curve are virtually indistinguishable.
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There are many types of computational complexity depending on the model being
studied. These include algebraic, combinatoric, analytic and parallel complexity.
Recent progress in algebraic complexity is summarized by Borodin and Munro [1]
and the state of the art in analytic complexity is covered in Traub [8]. Material on
parallel complexity may be found in Traub [7] and Heller [4].

Although we will focus here on analytic complexity, we begin by reporting
a recent algebraic result which was stimulated by a question in analytic complexity.

Given a power series for f we wish to calculate the first n terms of the reverse
power series. The classical algorithms for doing this are at least O(n®). Brent and
Kung [2] have shown that this problem can be solved with complexity O ((nlogn)*/2).
No non-trivial lower bound is known for this problem. They also show that the prob-
lem of reversion of power series is equivalent to the problem of calculating the first
n terms of the polynomial resulting from the composition of two polynomials of
degree n.

Finally they show (Brent and Kung [3]) that the polynomial consisting of the
first # terms of the reverse power series can be evaluated in O(nlogn). This result
gives us an upper bound on the combinatory cost of certain iterations.

We turn to recent results and open problems in analytic computational com-
plexity, or more specifically in iterative computational complexity.

Let f be a nonlinear operator, f: D = B, —» B, where B, and B, are two Ba-
nach spaces. Let o be a simple zero of f and let x; be a sequence of approximations
for « which are generated by an algorithm @. We shall consider here only implicit
problems, that is problems where only certain functionals of f are available.

Let e; represent some measure of the error of x;. For example ¢; might represent

|lx;—ajl, absolute error,

[269]
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