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HEHWAM; TIOTPEUIHOCTS SABMCHT JIILIL OT TOTO, HACKONBKO TOUHO BBIIOJHSIOTCS
VCIOBHA COIIACOBaHVA HA IpaHme pasgena cpef. K He0CTaTKaM MOYKHO OTHECTH
TO, UTO, BO-IEPBHIX, HYKHO YMETh BEIUMCIAT: (QYHIAMEHTANEHOE DEINCHHE WX
ymapo TprHa, BXOIAIEE B SAPA METETPATHHBIX OIEPATOPOB, BO-BIODHIX,
— gamuue Ha ' YIJIOBBIX TOUEK HECKOJBKO YCIOMKHSET PEIUCHME 3a/jauH.
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1. Introduction

One of the more intriguing ideas put forth with respect to the problem of solving
nonlinear equations is that of constructing systems of differential equations with
a parameter 7 such that solutions of the differential equations’ will converge to sol-
utions of the nonlinear equations for large £. Although such a procedure is a useful
one in view of the relative ease with which systems of differential equations can be
solved by high speed computers, there are three basic difficulties associated with it.
The first is that of establishing the initial data for which solutions of the differential
equations converge for large ¢; the ideal situation being that of global convergence
(i.e. for all finite initial data). The second is that of determining whether the limit
points of the solutions of the differential equations consist only of solutions of the
original nonlinear system, or whether there are additional spurious limit points.
And the third js that of determining the rate of convergence. Since the analysis given
in this note takes a somewhat different approach to these problems than has been
reported in the literature, it does not seem appropriate to cite specific references to
the extensive and excellent body of work on this subject. The readers familiar with
these problems will have little difficulty in perceiving parallels and implications with
respect to the various methods in current use.

We first give a general procedure for constructing families of globally conver-
gent systems of differential equations with a single point of convergence y=0.
This is achieved by means of Liaponov’s method of determining asymptotic stability.
Application of this procedure to the problem of solving the system y(x) = 0 is shown
to yield a globally convergent method if 4(x) = det(dy;/dx;) # O for all x. If 4(x)
= 0 on some nonempty set of points, then- the same procedure as used in the case
A(x) # 0 implies that the norm of dx(¢)/df can grow without bound. We construct
two different classes of procedures that give global convergence for problems with
A(x) = 0. These procedures converge to all solutions of y(x) = 0, but have ad-
ditional spurious points of convergence that are contained in the set 4(x) = 0. The
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set for which 4(x) = 0 is thus of considerable importance in such procedures. Lastly,
we show that the procedures can be adjusted so as to obtain exponential conver-
gence of the norm of y(x) for large ¢, and, more importantly, for finite ¢. Specifically,
we give a method for which '

”y(x(t))“ < 2exp(—tan(kz+¢))

where k is a given positive constant and ¢ is a constant that is determined by the
initial value of ”y(x(t))lg-

2. A convergence theorem

Let x = (xy, ..., xy) be a generic element of an N-dimensional vector space Ey
with inner product (x,y) and norm |lx|] = (x, x)*/%. The basis for the methods
given in this note is the following convergence theorem (global asymptotic stability
theorem).

THEOREM. Every solution of the System of autonomous differential equations

e o=
with finite initial data convergestoy = 0 for sufficiently large t provided
@2 F) = V(W) +UW ()
for any C* vector-valued function UW) such that
23) U =0, (W,UW))=0
and any scalar-valued function p(W) such that
1
4 #07) = § (PG -KAW))
where ‘
2.5) W) =¥, ¥(»,

V(y) is any C® function and P(W) and K(W) are any C? functions which satisfy the
Sollowing conditions:

@6) V() >0,

@7 V) =0<ey =0,
28 : P,V(y) =0ey=0,.
@9 , kW) <0,
2.10) ' KW)=0eW=0,
2.11) ‘ POV) >0,
@12) ‘ P(0) =0.
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" Proof. We first note that (2.9)-(2.12) imply
@13 Vi(P—K)lw=o =0,

while (2.6)~(2.8) imply V(y) tends to infinity as [yl tends to infinity. Since V(y) € C3,
we have W(y) = V,V(¥) € C*, and hence (2.2), (2.4) and the continuity conditions
satisfied by U(W), P(W) and K(W) show that F(y) e C*. It also follows from (2.2)-

(2.5), (2.8) and (2.13) that

F)=0Wyp =0y =20,

and hence y = 0 is the only critical point of the system @.1). A straightforward
calculation and use of (2.1) gives us

149 4 v(p®) = (V). )i = —F,V. F),

and hence (2.6)~(2.8) show that V(y) will be a global Liaponov function for the sys-
tem (2.1) that implies the global asymptotic stability of y = 0 provided [1]

(2.15) »() = (7,7 (), F»))
satisfies the conditions

(2.16) p(» =0,

(2.17) p(y) =0<xy =0.

Now, (2.5) and (2.8) imply that W(y) = 0<>y = 0, while (2.2) shows that we actu-
ally have F(y) = F*(W(y)), where F*(W) is of class C* in W. Accordingly (2.15)-
(2.17) can be rewritten in the equivalent forms

@2.18) »() = (W) = (W), F* (W),

(2.19) y*(W) =0,

(2.20) P*W)=0<W=0.

We have shown in a previous paper [2] that the general solution of the inequality
21 W, F*W))+KW) > 0,

for F*(W)e C* and K(W)e C? is given by

(2.22) F*W) = Vyp(W)+UW),

where (2.3), (2.4), (2.11), P(0) = K(0) = 0 and the given continuity conditions on
U(W), P(W) and K(W) are satisfied. In fact, the relation between F*, K and P is

(2.23) W, F*@))+KW) = PW) > 0,

and hence equality holds in (2.21) if and only if P(W) = 0. It thus follows, on com-
bining (2.18) with (2.21) and (2.23), that

(229 wW) = —KW),
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with equality holding if and only if P(W) = 0. The inequalities (2.19) and (2.20)
are thus satisfied provided K(W) is such that (2.9) and (2.10) hold. We must also have
satisfaction of (2.12) since P(0) = K(0) = 0. The function V(p) is thus established
as a Liaponov function for the system (2.1) with dV(y(t))/dt = 0 if and only if
y =0, and the theorem is established.

It is of interest to note that the above theorem characterizes the most general
system of autonomous differential equations (2.1) for which F(p) is of class C' and
y = 0 is a globally asymptotically stable critical point with a global Liaponov func-
tion ¥(y) of class C3.

3, Differential methods for solving y(x) = 0

As before, let x be a generic element of Ey and let y(x) be a C* mapping of Ey into Ey.
Further, let x(t) be a C* mapping of [0, c0) into Ey, then y*(t) = p(x()) isa C*
mapping-of [0, o) into Ey. With I"(y*(t)) chosen in accordance with the hypotheses
of the convergence theorem, the system of autonomous differential equations

d
(ERY) VO =-F *®)
has a solution y*(¢), by forward stepping procedures for all finite initial data
32 & =y*0),

which converges to the zero vector for sufficiently large 7. What we want, however,
is a system of equations for the determination of x(t), rather than y*(¢) = y(x(t)),
which converges to solutions of

(3.3 yx) =0

for sufficiently large ¢. A formal substitution of y*(¢) = y(x()) into (3.1) yields

N N
G4 24 ) = ~E((0) = ~FEO),
=1 7

from which it is clear that a system of differential equations can be obtained for
x(z). The convergence properties of the solutions of (3.4) are, in general, however,
quite different from those of solutions of (3.1). In fact, there are two distinct cases
which arise.

Case 1. Local invertibility of y(x) = 0. This case is delineated by satisfaction
of the condition
3.5) . <. det(dyfox;) # 0
for every x in Ey, and that p(x) is of class C?, Since satisfaction of (3.5) is sufficient
for local invertibility of y(x) = g, we refer to this case as locally invertible. Under
satisfaction of (3.5), the system (3.4) can be written in the equivalent form

36 RO = = TR,
v o
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where ¥;;(x) are the entries of the inverse of the matrix ((9y:/ 0x;)). Since y(x) € C?,
the functions ¥;;(x) € C*, and the right-hand sides of (3.6) are C*! functions of x.

Let ¥(y) be the Liaponov function for the system (3.1) which is used in the con-
struction of the vector-valued function F(y). We then have

(X)) V) = V(»() >0,
(3.8) V¥(x) = 0<y(x) =0,
av* v dy; v
. —_—= 2 = 0e—=0 =0,
(3.9 I 4 5, T <« %, < y(x)

from (2.6)-(2.8), and

(3.10) i%y; = (V,V*,gt— x) = (VyV, % y) < K(y))=K*x)<0,
(3.1 K*(x) = 0= p(x) =0,

from (2.10), (2.14), (2.15) and (2.24). Thus, V*(x) is a global Liaponov function
for the system (3.6) whose only critical points are those x for which y(x) = 0. Con-
vergence of all solutions of (3.6) to solutions of y(x) = 0 for sufficiently large ¢ thus
follows for all finite initial data x, = x(0). In fact, it follows that the solution of
y(x) = 0 is unique in Ey.
Case 2. Noninvertibility. This case is characterized by
det(dy,/0x;) = 0

at one or more points of Ey. Analysis of this case is most easily pursued by intro-
ducing the following point sets:

(3.12) 2 = {x € Ey| det(dy,/0x)) = 0},
(3.13) £ = {xeEyl |V.V*| =0, ly®)] # 0},
(3.14) I = {xeEyl y(x) =0},

where ¥*(x) = V(y(x)) and ¥ (p) is the Liaponov function for the system (3.1) that
is used in the construction of F(y). Since

N
ov* v dy;
ax, — ay; Ox,

and 7,V =0<p(x) =0« xeZ ,weseethatxe Fonlyifxe D ; that is

(3.15) Fc9.

It ‘also follows that

(3.16) di y* = (V,V*,i x) = (V,V, iy) < K(px) = K*x) <0,
. t dt dt

3.17) K(y(x) =K*(x) =0<w>xe¥.
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However, for each point x € #, |VxV*|.= 0. Since £ ¢ is empty, it follows from
d | .

(3.16) that ik unbounded for all x € #. An integration of the system (3.4)

can thus lead to unbounded values for dx;/dt and global asymptotic stability of the
system (3.4) can fail to obtain. Notice that we have only proved that it is possible
for global asymptotic stability of (3.1) to fail to provide global asymptotic stability
of (3.4); not that convergence of (3.4) necessarily fails. In this regard, it is useful
to note that the inclusion relation (3.15) shows that it is the point set 2 in which
troublesome points can occur, if indeed there are any for a given set of initial data.
This is particularly convenient since the point set & is characterized by satisfaction
of only the one relation det(dy;/dx;) = 0, as opposed to the relations ¥, V* = 0,
y(x) # 0 which characterize 7.

The possibility of unbounded derivatives occurring in the course of solving the
system (3.4) will now be circumvented, at the cost, however, of introducing spurious
points of convergence. ansider the autonomous system
Lx0) = PV O) = - 2%
where V() is any C? function that satisfies the conditions (2.6)-(2.8) and (V) is
a C? function of ¥ such that

(3.18) VL V¥,

(.19 dyldV = 0
for all non-negative ¥ and
(3.20) dyldo =0V =0.
It then follows that
d d .
3.21 Lya(x) = L ox)=— 2
( ) dt V (x) (VxV*a dr x)_ - W(VxV*’ VxV*)

d
= - InHR <0,

and hence the fanctions dV*/dt and dx/dt vanishif and onlyif x € & U_#. In particu-
lar, ||dx/dt] is finite for any solution of (3.18). Accordingly, every solution of
(3.18) wﬂl converge to a point of relative minimum of V*(x) or remain at points in
ZFugifit ’happens to start at points in Zu_£. Since & consists only of points of
absolutc-t mlmmum of V* (i.e., V*(x) = 0 < x € %), while ,# contains both points
:)if relative maxunum mq relative minimum of ¥*(x), any solution of (3.18) that

oes n‘ot stz.xrt in Zu ¢ will converge to a point in £ U, where .# is the subset of
F w}nch gives relati\?e minima of ¥*(x). We thus have a.convergent method for
all initial dafta beloggmg to the complement of #, but at the expense of convergence
jco. t'he spurious points x € ., In particular, we have a convergent method for any
m_}tlal.dafa belonging to the complement of 9 since # =9. This latter characteriz-
ation is simpler since it only requires calculation of the zeros of the single function
det(dy:/0x;). On the other hand, characterization of the set # requires that we find
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all zeros of the vector system of equations P V*(x) = 0, and this is of the same
order of difficulty as solving the original system y(x) =0.

. 4. Generalizations

It was shown in the last section that there are many methods for solving y(x) = 0
when y(x) = g is locally invertible for every x € Ey. On the other hand, we gave
only one method in the event that y(x) = g was not invertible for some x € Ey.
Two general classes of methods are obtained in this section for the noninvertible

case. :
Let V(y) be a C? scalar-valued function such that

1CRY] V) =0, V() =0«y=0,
4.2) V,V(») =0y =0,

and define the function V*(x) by

“4.3) V*(x) = V(y(x))

for y(x) a given C? vector-valued function. Let

44 Fx(x) = FW(x))

be defined by (2.2), where W(x) is now given by

“.5) W(x) = V.V*(x)

and (2.3), (24), (2.9)~(2.13) hold. We consider the system of autonomous differen-
tial equations -

(4.6

and use of this system shows that

—dd?x(t) = —F*(x),

“.7 dit VEx) = — (P V* F*x) = — W, FWw)).

The same reasoning as that given in Section 2 now yields

@) 4y < k) < 0
with
4.9) KW)=0<W =0.

It also follows from (4.4) and the results established in Section 2 that
(4.10) F¥(x) = F(W(x)) =0 W =0,

and hence dV*/dt vanishes only at the critical points of the system (4.6) which are
the points W(x) = 0. However, we saw in the last section that W(x) = V,V*(x) =0
holds for all x e £u #. Accordingly, the same reasoning as used in Section 3 shows
that every solution of the system (4.6) with initial data in the complement of # will
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converge to a point in Zu#A. It also follows from the fact that the set & is the set
of absolute minima of V*(x), that every isolated point X of & belongs to an open
neighborhood A4"(%) of initial data which contains ¥ and is such that every sol-
ution of (4.6) with initial data in 4 (¥) will converge to x. It is also clear that if &
contains an arcwise connected subset &, then there exists an arcwise connected open
set A (&) which contains & as a proper subset such that every solution of (4.6)
with initial data in A (/) will converge to a point on the boundary of & if the in-
itial point does not belong to &/, and will remain fixed in < if the initial data point
belongs to &..

Although these results provide significant generalizations of those obtained
in Section 3, they still implicitly contain the difficulty that one must characterize
the set of points #, and this in turn requires that we solve the vector system of
equations F,V*(x) = 0. We therefore present an alternative collection of methods
which does not involve this difficulty.

Let y(x) be a given C* vector-valued function and let

(@.11) @) = ((or:x)/8x3))
denote the Jacobian matrix of p(x) with respect to x. For the remainder of this sec-

tion we view x as a column matrix with N entries and xT, the transpose of x, as a row
matrix. Further, let C(x) denote the matrix of cofactors of the matrix J(x), so that

4.12) JECE@T = A)E,
where E denotes the N-by-N identity matrix and
(4.13) A(x) = det(] (x)) = det(dy,/8x;).
Choose F(y) in accordance with the convergence theorem given in Section 2 in
terms of the functions U(W), V(y), P(W), K(W), where we now have W = v,V ().

A convenient system of autonomous differential equations to be used under these
conditions is

(4.14) —%—x(t) = —A@)CHF*(x)
where F*(x) = F(y(x)). We then have
@19 Sy =J@) 2 x = ~ARIECETE) - - (A@VFO),

when (4.12) is used. The only difference between (4.15) and (2.1) is the factor (A (x)?
on the right-hand side of (4.15). Hence the critical points of the system (4.15) con-
sist of those for which y = yp(x) = 0 and, in addition, those for which A(x) = 0;

that is, the set of points £U2. Likewise, since the matrix C(x) is singular only if
A4(x) = 0, the system (4.14) possesses exactly the same critical points, namely ZuZ.
A straightforward calculation and the results established in Section 2 give

d : : .
@16 V) = ¥, V)”'%y = - (A(;c))z(v, V,F)< (A)K(F,V)<0

e ©
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A(x) =0,

d
4.17) WV(‘V) =0<ey=0 or

or
(4.18) —-V*(x) = (F, V)Tj—x = —(4®))*V,V)'F< (A®))Kp,V)< 0

It thus follows that every solution of the system (4.14) will converge to a point in
the set U2 for sufficiently large z. In addition, since ¥*(x) achieves its absolute
minimum of zero on the set & (i.e., V¥*(x) = V(y(x))), each isolated point X of &'
which does not belong to & is contained as an interior point of a neighborhood
() that contains no points of 2, and for which every solution of (4.14) which
starts in A4 (x) will converge to X.

Although this method does not require that we characterize the set £, it has
the disadvantage that every point of @ is now a spurious attractive point. This can
be particularly troublesome since the set & can divide Ey into two or more parts,
in which case zeros of y(x) = 0 which lie in one part can not be approached by
points starting with initial data in another part. It would thus appear that the pre-
vious collection of methods generated by (4.6) may often be preferable since .# = 2.
Further, # is usually significantly smaller than 9, and # is often discrete while 2
is not, in general. This latter observation is particularly important in those cases
where @ divides Ey into two or more parts, for ,# may not have this property.

5. Exampleé and convergence rates

We construct specific examples in this section for which the rate of convergence
of the method can be determined. Although we confine our analysis to the system
studied in Section 2, it is evident that these same considerations can be applied to
the convergence problem for either the system (4.6) or (4.14).

We take
(. Vo) =59 =3 lyl%
so that (2.5) gives
(52) W) =y

Accordingly, if we select F(p) in accordance with the convergence theorem given
in Section 2, and take U(y) = 0, then (2.2), (2.5) and (5.2) give

(5.3) F(y) = Vy0(»)

and we have
1

da
gt—y = —Vyp(») = “VyS {P(Ay)—K()} —-»
0

(54)

(55) % V = K()—P(y) < K() < 0
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since (2.9)-(2.13) hold. Since K(y) is at our disposal, subject only to the conditions
K() <0, K(y) = 0>y = 0, we are free to select X(») by

(5.6) L KO = -0GIvI) = -2,

where Q(V) is a C? function of its argument such that

(&N)) QW) =0for V=0, Q0)=0«V=0.

In this event, (5.5) becomes

68 2 v=-0m-rp) < -0)

since P(y) > () It thus follows that every solution of (5.4) will have the property
-9 Iy@1* < 20(),

where o(f) satisfies the differential equation

(5.10) d—” = —Q0(v)

subject to the initial condition -
.10 0(0) =3 YOI

We note in passing that equality obtains in (5.9) if and only if we choose the function
P(y) such that P(y)=0.

It is now a straightforward problem to choose the function Q(¥) in such a way
to obtain various rates of convergence. An obvious first choice is
(5.12) o) =kV, k>0,

which obviously satisfies the conditions (5.7). In this case, (5.10) becomes dv/dt
= —ko, and hence (5.9) and (5.11) yield

(5.13) ly@I* < 2}p(0)|Pexp(—kt);

that is, we have exponential convergence. In particular, if we take P(y) = 0, then
F(y) = —ky and we obtain strict equality in (5.13). Application of these results

to the problem of solving y(x) = 0 by means of the system (4.14) and (4.15) gives .

(5.14) *x(t) = —A@C(x)y(x),

(.15) y(x(t)) = ~(A@®)»@).

The system (5.15) is seen to be quite similar to the Davidenko-Branin [3] method
(dy(x)fdt = sign(A(x))y) with the exception that (5.15) has a C! right-hand side,
while the function sigu(A(x)) which occurs in the Davidenko system has a jump
discontinuity on the set &, and all of the attendant troubles which such disconti-
nuities cause.

A more striking example is that provided by the choice

(5.16) o) = kV(1+@V)2), k>0

icm°®
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which clearly satisfies the conditions (5.7). In this case, (5.10) gives
do

(5.17) - = —ko(1+ (Inv)?),

and hence (5.11) and (5.17) yield

(5.18) 2(t) = exp(—tan(kt+c)),

(5.19) —7/2 < ¢ = —tan~(In(3¥(O)?)) < =/2.
Thus, (5.9) shows that

(5.20) Iyl < 26Xp(—tan(kt+c)); »

. . . . L T -1
that is, we obtain exponential convergence in finite time T = 5 ¢ k~! where ¢

is given by (5.19).

If we wish to apply this result to the problem of solving y(x) = 0 by means
of the systems (4.14) and (4.15), then we must compute F(y), and hence (). Now
for P(y) =0,

1 1

p0) = - (KO 2 =+ SQ(PV)%
(1]
1

kVS {1+(n2V)2}hdA = = V{3 2lnV+(In¥)?}
[1]

and hence (5.3) gives

(5.21) FO) =% (14 aayy.

Thus (4.14) and (4.15) yield

(522) 2y = - (") {14+ P)2 ) y(),
d k

(5.23) ZVW = -5 (A {1+ (nV)*}y(x)

and

(5.24) ‘;V ( , ‘g) = — k(A {1+ V).

Thus, if the point set 4" = {x e Ex[V(»(x)) = 7“}’“2 < R?} contains no points
such that A(x) = 0, then there exists a number é > 0 such that
(5.25) 8 = min(4(x))
. xeN
and (5.25) yields
dav

(5.26) v < —0kV{l+(n¥F)*} <0
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Hence, every solution of (5.22) which starts in 4" will converge such that

627 ly@)I? < 2exp(—tan(dkt+c))

for '

(528 ¢ = —tan~(In(Fly O)1%)).-
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1. Introduction and preliminary considerations

Theory, in the form of the implicit function theoren, is quite specific about solv-
ability of implicit systems of relations. Numerical procedures for the realization of
the solutions, when the conditions of the implicit function theorem are met, is quite
another matter. The purpose of this note is to give families of differential procedures
for solving systems of implicit relations.

Let x denote a vector (column matrix) in n-dimensional number space E, and
let « denote a vector in m-dimensional number space E,,. Let f(x, @) be a given vec-
tor valued function that is defined for all x in a given n-dimensional region R, of
E, and all « in E,, and which takes its values in E,. Thus, f(x, @) is a mapping of
R, % E,, into E,. We further assume that f is continuous over its domain of defi-
nition and that its matrices of partial derivatives
1.0 A(x, @) = Vaf, B(x,a) =Faf
are also continuous on the domain of definition of f. To be more specific, let 7, j, &
be indices which can take on values from 1 through » and let a, b, c be indices that
can take on values from 1 through m. We then have

A = ((/ox)), B = ((feom)),
so that A is an m-by-n matrix and B is an m-by-m matrix.

The problem we wish to solve is that of constructing differential procedures
for obtaining & = @(x) as a vector valued function of x such that
2 f(x. 0@) =0
is satisfied at all points x of E, for which such solutions exist. The implicit function
theorem tells us that if there are elements X and x such that
3 f@Ezn=0
and det(B(E, @)) # 0, then there exists an n-dimensional neighborhood N(x) of
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