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Hence, every solution of (5.22) which starts in 4" will converge such that

627 ly@)I? < 2exp(—tan(dkt+c))

for '

(528 ¢ = —tan~(In(Fly O)1%)).-
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1. Introduction and preliminary considerations

Theory, in the form of the implicit function theoren, is quite specific about solv-
ability of implicit systems of relations. Numerical procedures for the realization of
the solutions, when the conditions of the implicit function theorem are met, is quite
another matter. The purpose of this note is to give families of differential procedures
for solving systems of implicit relations.

Let x denote a vector (column matrix) in n-dimensional number space E, and
let « denote a vector in m-dimensional number space E,,. Let f(x, @) be a given vec-
tor valued function that is defined for all x in a given n-dimensional region R, of
E, and all « in E,, and which takes its values in E,. Thus, f(x, @) is a mapping of
R, % E,, into E,. We further assume that f is continuous over its domain of defi-
nition and that its matrices of partial derivatives
1.0 A(x, @) = Vaf, B(x,a) =Faf
are also continuous on the domain of definition of f. To be more specific, let 7, j, &
be indices which can take on values from 1 through » and let a, b, c be indices that
can take on values from 1 through m. We then have

A = ((/ox)), B = ((feom)),
so that A is an m-by-n matrix and B is an m-by-m matrix.

The problem we wish to solve is that of constructing differential procedures
for obtaining & = @(x) as a vector valued function of x such that
2 f(x. 0@) =0
is satisfied at all points x of E, for which such solutions exist. The implicit function
theorem tells us that if there are elements X and x such that
3 f@Ezn=0
and det(B(E, @)) # 0, then there exists an n-dimensional neighborhood N(x) of

[289]


GUEST


290 D. G. B. EDELEN

¥ in R, such that @ = @(x) exists on N (=) and f (x, (p(x)) = 0 is identically satisfied
for all x in N(x). This neighborh()?d N(x) has the additional property that det(B(x,
(p(x))) <+ 0. Further, for all continuously differentiable functions x(¢) with range in
N(X), we have

dx dp

flasedl =0
(1.4 i A p +B 7

£
(matrix multiplication); that is, df/dt = 0. Here, we have set

@) 50 = 0(0),  F) =10, $®)).

Clearly, there are three numerical problems. The first is that of finding two num-
erical vectors ¥ and & such that f(¥, & = 0 and det (B(Z, %)) 0. The second is
that of finding values of ¢(x) for given values of x in N(x) such that « = @(x) sat-
isfies f(x,®) = 0. The third problem is that of finding other pairs of numerical
vectors y and B such that f(¥, B) = 0, det (B, B)) # 0, and the pair (7, B) does
not belong to the solution set obtained by starting with the pair (x, @). The possi-
bility of the existence of such additional pairs (¥, B) can not be excluded since the
implicit function theorem only gives sufficient conditions for the existence of local
single-valued solutions. For instance, consider the problem of solving x*+a?—r?=0.
Clearly there are two solutions o = + ]/ r2—x2 for each x in the open interval (—r, r)
and only one of these can be obtained by starting with the pair of points x = 0, & = r.

The second problem is treated first in Section 2 since it is the easier of the three.
“The first problem is then solved in Section 3 and Section 4 takes up the third problem.

One of the most vexing classes of problems in which implicit relations occur
consists of nonlinear boundary value problems in which there is coupling that is
defined through a collection of implicit relations. Section 5 gives a method of sol-
ution for such problems by converting them to initial value problems in one addition-
al variable ¢ such that the large time limit of the solution of the initial value problem
solves the given boundary value problem. Such a procedure is particularly useful
in that the initial data can be chosen as any convenient vector of functions that sat-
isfies the given boundary conditions.

2. Generation of a solution on a grid in E,
We assume in this section that we know a pair of numerical vectors x and & such that
f&, % =0 and det (B, %)) 5 0. Let e;,i = 1, ..., n, be an orthonormal system
of basis vectors for E,. The set of all points
@0 x,(t) = X+teg
defines a line in E, that passes through the point X and is parallel to the vector e; .
It is therefore meaningful to ask for a vector function &, (¢) such that
(22) f(xl(t)’ oy (t)) = 0’
@) ) =a.
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When (2.1) is used to calculate the time derivative of (2.2), we obtain the system of
differential equations

24 B(x+te,,

ayde;

and the initial data (2.3) for the determination of the vector «,(f). Since
det (B(x, E)) s 0 and B is a continuous matrix-valued functions of its arguments,
it follows that there is a maximal open interval n, that contains the point ¢+ = 0 and
is such that a solution exists to (2.4) subject to the initial data (2.2) for all ¢ in n;.

Clearly, det (B(E+te1, oy (t))) # 0 for t in ny, and hence the system (2.4) can be
solved for the vector da,(¢)/dt and then integrated numerically. The reason that we
can not guarantee existence of solutions to the system (2.4) for all 7 is that det (B(x+
+1eq, a:(t))) can go to zero as ¢ approaches the endpoints of the closure of 7,. The
solution a; (¢) allows us to generate a mesh of pairs of values by

2.5 X = X+khey,

(2.6) o = o, (kh),

where k is a given constant (me‘sh constant) and k ranges over the integers such

that kh belongs to ny.
We now start with each of the points X+ khe; and generate the line

X)) Xoi(t) = X+khe, +te,.
Since det (B(E+khe1, al(kh))) # 0, we can determine vector function «,(f) for
each value of k by solving the system of differential equations

(2.9) B(%+khe, +te,,

dzk(t))ez

subject to the initial data
29 a2 (0) = o = o (kh),

for all ¢ in a maximal open interval »,, that contalns t = 0. As before, we construct
the two-dimensional mesh of pairs

(2.10) Xi; = X+khey +jhe,,

(2.11) oy = o (jh),

by allowing # to take on the values jh for j ranging over the integers such that jh
belongs to n,.

_This procedure can be continued by successive use of the basis vectors es, ey, ...
until a mesh of pairs of numerical vectors x and « is built up such that the mesh of
numerical vectors x constitutes a set of grid points on E, with grid spacing # that
spans an n-dimensional region R, of E,. Clearly, the mesh so generated constitutes

a numerical solution of f(x, «) = 0 on the region R,. It is also clear that the region
R, is maximal since each of the open intervals n;, 1,4, 31y, ete. is maximal.
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3. Generation of the starting values for the grid

The problem we now have to solve is that of finding a pair of numerical vectors x

and & such that f(x,&) = 0.
We start by picking a specific numerical vector X. It is then useful to introduce

the simplifying notation

31 f@ =&, ),
(3.2 B(x) = B(x, %).

In these terms, we need to find a vector a such that
3.3) ‘ fl@)=0

If there is a priori information to the effect that det (B(@)) # 0 for all « in E,,, then
an intrinsic economy can be achieved in the solution of (3.3). We therefore divide
our considerations into two separate cases.

Case I: Det(B(®) # 0 for all «.

In this case, we can use the Davidenko method [1]. This method consists of
picking an arbitrary initial vector &, for « and solvmg the system of autonomous
differential equations

G4 T@ _ 5y % - G,

where K is a positive constant. Since det(B) # 0 for all a, this system is equivalent
to
da

(3.5) = —K(B)"f(@)
where (B)~* is the inverse of the matrix B. It then follows, on setting
) V(@ = 3f@'f@,
(f* = transpose of f) that
v s da
(EX)] & = B_dT = —Kf'f = —2KV,
and hence
69 P() = L ®)F@®) = Vo exp (—2K1).

Accordingly, 'lim{u(t)} =& exists and satisfies f(&) = 0. This solves the problem
-0
for we then have the required pair of vectors X and @ such that f(x, @) = 0.
It is to be moted in passing that & is the only vector such that f(x, &) = 0 for
the given numerical vector X. This follows from the fact that det (B(#)) # 0 for all«

is ‘sufficient in order to insure that the mapping B = f(«) is a one-to-one mapping
of E, to E,.
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»

Case II. No a priori information about det(B).

Clearly, the Davidenko method can not be used in this case since the coef-
ficient matrix B(a) of the differential system (3.4) may become singular for some
values of the vector a. Instead of the system (3.4), we now use the autonomous differ-
ential system

de.

(3.9 - - = — KB(@)" f()

where K is a positive constant. If we assume that each of the entries of the matrix
B(a) is a C* function of the vector &, the right hand sides of (3.9) are C* functions
of & so that there is no question about existence of solutions. Further, with V()
defined by (3.6), the system (3.9) implies that

‘ AV _apdr _ —T——r-~(—1)£f:ﬁ
(3.10) S =FBS = —Kf"BBY =\ ) <©

with dV/dt = 0 if and only if BYf =%:~ =0. Accordingly, V(a(z)) decreases

along every solution of the system (3.9) whenever dx/dt # 0. Since V' > 0 with
V(x) = 0 if and only if f(«) = 0, every solution of the system (3.9), with an initial
value of « such that de(0)/dt 0, will converge for large values of ¢ to values of «
for which either ¥() = 0 or ¥(x) = relative minimum. For those large time limit
points such that V(&) = 0, we have f(z) = 0 and the problem is solved. For those
large time limit points such that V(&) # 0, we have ET(a)f_(a) = 0 but f(a) # 0,
and hence such points satisfy det (E(az)) = 0. We have thus established that the large
time limit points of the system (3.9) exist for all initial data and contain the set of
all points « for which f(&) = 0. We also obtain spurious convergence points where
BT(@)f(«) = 0, but these are easily eliminated by testing to see whether the large
time limit points satisfy f(«) = 0. This testing procedure is a simple one since the
value of the vector « to be tested is known.

We note in passing that V(a) is proportional to the square of the error in solv-

ing f(z) = 0, and that the system (3.9) can be written in the equivalent form
(3.11) — = — KV, V(a).

Thus, the differential procedure (3.9) is the differential analog of steepest descent
methods; that is, da/dt is a vector that points in the direction of maximal decrease
of the error.

4. Multiple branch solutions

If we know that det (B(¥, ®)) # O for all «, then we have seen that there is only
one vector & such that f(x, @) = 0. Thus, there is one and only one solution of
f(x,a) = 0 over the point x = ¥. On the other hand, if det(B(x, «)) can vanish
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for some vector «, there can be more than one solution of f(%, ) = 0. This follows
from the results established under Case IT of the previous section. If there are several
solutions &, , &y, ..., &, of f(x, @) = 0 that are obtained from the differential pro-
cedure (3.9) by allowing the initial & vector to change, we can use the method de-
scribed in Section 2to generate a solution grid for each starting pair (¥, %), (£,%,), ...
.oy (X, ). Clearly, in this instance, f(x,a) = 0 has p-fold valued solutions. It
is also clear that the size of the grid over which each of these solution meshes is de-
fined can be different for each different starting point, (¥, #,). We do not consider
in this note the very complex problems of whether the various value surfaces of the
solution fit together where det(B) = 0, the manner of this fitting together process,
or the order in which the surfaces are fitted together.

5. Nonlinear boundary value problems with implicit coupling

The results established above provide a means whereby. differential procedures can
be constructed for the solution of nonlinear boundary value problems with implicit
coupling.

‘We again suppose that we are given the vector valued function f(x; «) and that
a = ¢(x) is defined implicitly by

(.1) Sflx, ) =0.
We further assume that the matrix B(x, «) defined by (1.1) is nonsingular so that
(5.2) da = —B~'A4dx

holds for all vectors x. Now, consider the collection of vector valued functions
x = x(z, t) defined for all z in the closed interval [a, 5] and all £ in [0, c0) and are
such that

(5-3) xs(aa t) = Y1, x(bs t) = Y2,
x(z, t) has continuous second derivatives with respect to z, continuous first deriva-
tives with respect to ¢ and continuous mixed derivatives with respect to x and t.

We wish to determine one such vector valued function which is such that it renders

the functional
b

549 L(x;a) = S Z(z,x, 0.x, 0)dz

a
stationary in value. We assumed that .% is an analytic function of its 2m+n+1 ar-
guments such that .
(53 Lix;a) > J
for all x(z, t) and all a(z, ¢) that are related by (5.1). Here 8,x denotes the deriva-
tive with respect to z. We shall also use d,x to denote the derivative with respect

to ¢. The standard methods from the calculus of variations [2] yield
b

Lt ee 2% 0z
69 Lss0) = SH“E; o b 2L s

e ©
Im DIFFERENTIAL PROCEDURES FOR SYSTEMS OF IMPLICIT RELATIONS 295

If we define the row matrix of Euler—Lagrange derivatives by

0L o0&
57 Y
and note that (5.2) implies dx = B~*4dx, (5.6) becomes
b .
8L
(5.8) SL(x;0) = S[{E]Sf}x— -a;B ’A] oxdz,

so that we seek solutions to the implicit boundary value problem

(B2} %’.B—u -0,
5.9
f(x5 “) =0,
(5.10) . x(a, 1) =y, x(0b,1) =y,.

Now, as is well known, boundary value problems are difficult to solve. We
thus proceed to construct an initial value problem whose solution has a large time
limit that satisfies the given boundary value problem by making use of the occurrence
of the variable ¢ in the above formulation. Consider the system of equations

T
(.11) ~8x = {E|#)Y— (%’? B-lA) Ew (T = transpose),
(5.12) 8@ = —B-'Adx = —B 4w,
(5.13) x(a,t) =y, x(b,t) =7a,
(514 x(z,0) = x0(2), x(@) =71, Xo(b) =17.-

Use of the procedure given in Section 3 and the fact that det(B) # O allows us to
obtain the compatible initial data

(5.15) a(z, 0) = ap(2)
such that
(5.16) Sf(xo(2), %(2)) = 0

for all z in [a, b]. It now remains to show that this initial value problem will have )
solutions whose large time limits satisfy the given implicit boundary value problem.
It follows immediately from (5.8) with § = 9, that

d . _S 0L .,
ra L(x; @) = a{{El.Z’},,—— WB A}@,xdz,
and hence (5.11) yields

b
: d
.17 WL(x;a) = —Swadz< 0
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with equality holding if and only if w = 0; that is, if and only if (5.8) holds, in which
case (5.12) yields d¢ = 0. Now, we have

=), S lme<o

. L . d
and hence we obtain a contradiction unless lim i L{x; @) = 0. We have seen,
t->00

however, that this can be the case if and only if limw = 0, in which case we also
100

obtain lim &, = 0. The desired result is then established on noting that all sol-

o0

utions of (5.12) satisfy f(x, @) = 0 since det(B) # 0.
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METOJbI PEINEHHUSA
HEKOPPEKTHBIX 3KCTPEMAJIBHBIX 3AAY
L4

A.H. TUXOHOB, ®.II. BACUJIBEB

M it Tocydap ii Yrusef Daxyasmem BuwucaumensHod
Mamemamuxu w Kubepremuxu, Mockea, CCCP

TIpH YHCIEHHOM PEIEHHM NPHUKJIAMHBIX 33127 BAXKHOE 3HATCHUE umeeT TOT BaxT,
6yfeT I pelleHre paccMaTpuBacMofl Sajay HENPEPHIBHO 3ABUCETE OT HCXOMHBIX
TARALIX. AU, BHAYE TOBOPA, OyHET JII HCKOMOE Derlerue YCTONYMBHIM IO OTHO-
[HeHMIO0 K BO3MYIEH¥sIM BXOJHBIX JAHHEIX B TOH HIH wHOl Tonosyoryy. Ecrm pe-
IIeRVe YCTOHTMBO IO BXOMHBIM [AHHBIM, TO MOMKHO GBITH YBEPEHHBIM B TOM, UTO
[OCTATOUHO MaJIBle TIOLPENIHOCTH B 33[HMK BXOJHBIX NAHHBIX IPHUBEAYT K Ma-
JTHIM IOrPEHIHOCTAM B onpenenenmy pemrerns. Huoe fero peruars HEYCTOAYHBYIO
KU, KAK TOBODSAT, HEKOPPEKTHYIO 3a/{ady, PEIUeHHe KOTOPOH He ABJIACTCA He-
OPEPHIBHO 3aBMCALTEM OT BXOEHBIX JAHHEIX: B 9TOM Clydae IpuOmpHEHRHOE pe-
IIeHUE 3aJaUM, OTBEUAOIIEE HETOUHBIM BXOJNHBIM JAHHBIM, MOXKET KaK YIOJHO
CHJIBHO OTJIHUATHCSI OT HMCKOMOTO TOYHOIO pEIleHHs. Meny TeM HEKOPPEKTHBLIS
332K BOSHMKAOT B CAMBIX DASIHUHBIX 06JacTsX (DH3MKH, TEXHMKH, SKOHOMHEXH
u 1.4. [1], u BosHMKaeT BaKHAA MpobJemMa: KaK UHCIEHHO DEINaTh TAKHe 3a-
maam ?

OCHOBBI TEOPHH ¥ METOJIOB DEIIEHUA HEKOPPEKTHLIX 3a/(ay 3aI0MKEHBI B pa-
Gotax A. H. Twxomosa, B. K. Mpamosa, M. M. Jlaepentsera [1]-{15]. K na-
CTOSIEMY BPEMEHM CO3[aHa JOCTATOUHO MONEHAS OOMias TeOPHs HEKOPPEKTHBIX
34739, CO3JIAHBI NPHOIDKEHHEIEC METOMBI PEIIEHIST TAKKMX 337a9, C JIOMOWIBIO KO-
TODHIX YCHENIHO PEIeHbI K PENIAOTCA MHOIME IPUKNAJHBIC 3aJauH. Ilo noBomy
obImeit TeOpHM HEKOPPEKTHBIX 3a/lad U ef NPHIIOYKEHMMA, 8 TarKe Gubrmorpadun
o aTEM Bompocam OTchlnaem umrarens x [1], [15], [16].

B macTosuneit crathe GYAYT CHCTEMATHYECKH ¥ eNHMHO0OpasHE! HCCIe{OBAHEL
METOZbI PENIEH A HEKOPPEKTHBIX 33/1a4, HENIOCPEACTBEHHO CBASAMHBIX C 3a/[aTamy
MATEMATHIECKOTO IPOrPAaMMUPOBAHMES, OLTHMAIEHOIO YIIPABJICHNSA ¥ APYTHAME SKC~
TpEMaJFHBIME 3a7adaMy; U3 JMTEpaTyps! 3mech ynomsmem [1], [81-[72].
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