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1. The identification problem

1.1. Let us consider the following problem: Some chemical components are
diffundating from outside into a plate of catalytic material, several reactions take
place and the reaction products leave the plate by diffusion. Let there be » reactions.

Then for # independent components with concentrations ¢;, i = 1, ..., n, we have
as a mathematical model of the whole process the system of equations:
d dc .
m ;i?(di(r)Tri) =qr,c,.n6), —I<r<l,i=1,..,n,
@) a(—=1) = c(1) = ¢y

In (1) 4, are the diffusion coefficients, ¢, the reaction rates. (2) means that we are
considering a process in which the outside concentrations ¢, are equal on both sides
of the catalytic plate (this is of no importance, of course; there may be different
outer concentrations as it is the case for membranes). The process may be tempera-
ture dependent. In that case one of the ¢, say ¢,, gives the value of the temperature
and then d, represents the heat conduction coefficient.

Let us now suppose that the coefficients d,(r), i = 1, ..., n, are unknown, but
Wwe are given a set of data, consisting, for instance, in the experimentally measured
values g of '

® ) = e, G @=d S, i=1,.m,

” 1
g = n | a@dr,
1 —1

where d = (dy, ..., d,).

* Revised version of two lectures, held at the Banach Centre in May 1975..
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g1 gives the concentration (or temperature) measured at the place 7 of the
plate, g, is the concentration flow across the boundary r = 1, g5 is connected with
the difference of the weight of the plate after and before reaction (y; is the specific
weight of the ith component).

The question now is, under what conditions on the values g and the rates g,
it is possible to determine (to identify) the diffusion coefficients di(r).

368

1.2. We now introduce the function space
oy = I wil-1.1
1

consisting of vectors y = (Jy, ..., ¥n) 0f functions y; belonging to the usual Sobolev
space Wi[—1, 11.
In (W2 we define the scalar product

n

w=30
1

1 -~

du, doy

auy I71\n
R dr, u,0e(Wi),

and the corresponding norm |- [|.
We shall pass from (1), (2) to an operator equation in (I/f/%)" and look for con-

ditions under which the latter has a solution in (Wi)". To this end we restrict con-
siderations to functions d,(r) which belong to L%, :

4) dieLf={z(n),zeL,[-1,1]1,320 > 0,2 2 z, ae. in [—1,1]}

Furthermore, we consider only rate functions g, satisfying the following three
conditions:

(2) each ¢, is continuous in {re[—1,1],|gl <0}, i=1,..,n,

n 1
® ® 2§ aCcn.ad=a >0,
1 -1

© 2 (@rs c1r r )= Ty oo EWNei=E) 2 0
1

for all r€[—1, 1] (monotonicity condition).
In (1) we now transform ¢; into x;,
©

possessing homogeneous boundary values. Mulﬁplying the resulting equations by
ve (W1 and integrating by parts we get

X =c¢—cy, IP=1,...,n,

-

a1 &, o, 1

0) Z{i a4 St ar §1pi(r,x1, x,,)vidr} =0,

where

® DTy Xy s Xn) = Gu(Fy Xy HCo1s ooy XntCnt)- -
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By the Riesz theorem we obtain
n 1

2 S dry Z ® 4 Do),
1

where D is a linear sclf.-adjoint operator which is, by (4), positive-definite
D: (Wiy — (W3,
where z, = z,(d) = ess min 4,(r) > 0.
VYoV
In the same manner, using (5a), we have
n 1

D § by 1 e e = [P(3), 9,
1

T —

D=D*3>z,-1, -

where P(x) is a (completely) continuous operator, nonnegative in view of (5¢):
Px)—~P@), x~y] -

n 1

= 12 Sl et xy+erns ooos Xat ca) =@, Y1+ Cass ooes PatCar)) X

x (Xt )= (it ) dr 2 0.
Thus (7) is equivalent to the operator equation
) 0, x) = Dx+P(x) = 0.
Now, O being continuous and monotone,
(10) [0(d, x)-0(d, y), x—y] 2 zo(d) |x—y|%,

equation (9) has a unique solution x = x(d) in (Vlnfé)".

(For the assertions stated in this section see [1], [2] and [3].)

‘We show now that this solution is locally lipschitzian in d: Following [4] w1
write ’

[(Dy—D)x(dy), x(d)—x(d,)] = [Q(dl ) x(dl))_Q(d7 x(dl)), x(d)—x(dl)]

=[0(d, x(d))-0(d, x(d,)), x(d)—x(dy)]

= zo(d) |l x(d)— x(d}) |1*;
but .

(D~ D)x(ds), x(d)—x(d)]

n 1 . ‘
dx(d,) | d. ;
- Y| -aoy 8 (2D _ 2oid),

< ldy=dll §x(@) |x(@~x(@d)],
where '

ldll, = ess max di(r), dieLy.’
ViV
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Hence
d
an @@ <% (;,))" ld=d, ).
To get an estimate for l]x(dl) Il, we set in (10) x = ¥(dy),d=d;,and y =0:
2@ %@ 17 < [=0(d:, 0y, x(d)] = — [P(0), x(d)]

n 1 N
=3 5 0, O dr
1 -1

1

n

1
Z (51 qii(r’ [SEPRNE Cny)dr _Sl ‘.?Cizdr)ll_

1

N

aollxlpm-
Here ¢, is the number occurring in (5b). Using the well-known inequality

n 1
ol = (2 § 2] "< Zoiel;

N

we obtain

2od) ) 1 < 2 o @),

S
@l < oy

(Here the sense of (5b) becomes clear: This condition excludes the trivial solution
x =0, ie. ¢ = ¢y Vi) Thus, by (11),

_ 24,
H@~5@)] < Lild=dilor L = oo s

We remark that, by the Sobolev imbedding theorem, we have x € (9 ", s < :_1!-, and
that from

172 .
w1 <[257) el oc i,

follows also the local Lipschitz continuity of x,(d, r) (and likewise of ¢,(d, r)) for
all i and r. _

TaEOREM 1. Let dy(r),i = 1, ..., n, be positive continious functions on [—1, 11
Then, if (5) is satisfied, the boundary value problem (1), (2) has the unique (generalized)
solution ¢, ¢; = X;+¢y, i =1,...,n, X€ (Vlnf'zl)". The dependence of this solution on
d is locally lipschitzian:

_ 172 '
led, ) —cldzs M| < = (dz)q; @ ( L 2r2 ) essmax|d (r) —da:(r)],
o(@1)20(d;

where zo(d,) = ess min diy(r), k= 1,2,

(34
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1.3. Now take 4 from a compact subset of (L:)", assuming; for ifistance, that
the components of the elements of this sitbset are representable by finite linear
combinations of continuous coordinate functions with bounded coefficients. Define

12) J@d) = Je@d—él?

where ¢ denotes the (generalized) solution of (1), (2) corresponding to a given d
and ¢ is a continuously differentiable vector-function constructed from the given
values g of the functionals (3).

By the generalized theorem of Weierstrass (see [5] and [6]) the continuous func-
tion f(d) will attain'a minimum, say d°, on the chosen compact subset. This minimumi
d° can be considered as a solution of the identification problem (1)-(3) for the given
data g. d° is a*quasi-solution in the sense of Ivanov [7],: [8].

Remark: Indeed, f(d) attains its minimum also on closed ‘bounded balls in
(LL) [6]: ;

By better using the properties of the operator Q(d, x), it can be shown that
f(d) is weakly* lower semicontinuous on (LX) = (LY. In this space (the adjoint
of the Banach space (L;)"®) bounded closed balls are also closed in the weak* top-
ology and therefore, again by the generahzed Weierstrass theorem, f(d) takes on its
minimum on such sets.

1.4. As an illustration we turn to a rather special case: There is only one
reaction (n = 1), the reaction rate depends on the chosen independent component
only and the diffusion coefficient is assumed to be constant.
We shall see that even in this case the identification problem (1)-(3) may have
no unique solution.
Norming the concentration to the outside concentration we consider the bound-
ary value problem )

as a2 — g, =D = o =1.
Let g,(d) be defined by ' o '
1
a4 5@ =c©, H@=d% W, g = ).

-

The problem now is to find the positiv;e number d from
(14) ad) =g

for given values g,.
We assume g(c) to be deﬁned for e 0 and to satlsfy

(a) g is continuous in ¢ > 0,
(15 () ¢(0) =0,49(c) > 0,¢> 0,

(©) g is nondecreasing in ¢ > 0.
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First we replace ¢ by ¢,

— | ae)s cz0,
a9 9O =\ _q(e). ¢ =<0.
To the boundary value problem
an FLag CRICCIERORS

we now can apply Theorem 1 establishing the existence of a unique generalized sol-
ution to (17) which, in this case, is the classical two times differentiable solution.
(Of course, for deriving the existence and uniqueness of a classical solution to (17)
under conditions (15) it is not necessary to apply the monotone operator theory
but rather refer to [9] or [10]. For systems (1) with differentiable d(r), the results
of [11] and the references cited there could be used.) From the maximum principle
and from. (15), (16) it follows that this solution is nonnegative. Hence, it is a non-
negative solution of (13), and (13) has only this nonnegative solution.
" We remark that by symmetry (13) is equivalent to

d “d
) $=40, FO=0, =1
Integrating once we get (d > 0 by assumption)
de 1 Sr

19 il ) g(c(0))do,
ie, by (15),

de de

—‘—;(r)zo forr>0, -‘—IF(r)é 0forr<0
Thus

0<c0)<e(m<1, rel-1,1].

Note that.(15) does not exclude the case ¢(0) = 0, but this may occur only if g be-
longs to the set of continuous functions for which the Cauchy problem

de
(20) d?;f =4q(@, c@=0 —(0)=0
is not uniquely solvable (see [12]) and [13]), e.g. if
v glc) =ac®, 0<b<l.

If, on the other hand, this Cauchy problem is uniquely solvable (see [14]; for in-
stance, if g is lipschitzian in ¢) then, of course, necessarily c(0) > 0: for ¢(0) = 0
would then imply ¢ = 0 and hence c¢(1) = 1 would not be fulﬁlled But if ¢(0) > O,
then, repeating the above argument, we get

@n r>0, 0<r<l.

d
d—:(r)>0, 0<c0)<c(r) <1,

icm°®
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Further use of explicit representations similar to (19) leads to the followmg
result [15]:
THLOREM 2. Consider the identification prable»zs
= {(13), (19), (14)}, i=1,2,3.
Assume (15) to be fulfilled, and, for i # 3, also (15;):

(15,) (20) is uniquely solvable,
(15;) g(c) is strictly increasing on (co, 1) for some co€(0,1).
Then P; has a solution d e (0, w) only if

2,€(0,s5) where s, =1, 5, =g(l), 53 =2.
This solution is unique.

If (15,) is not satisfied, P; (i = 1, 2) hasa solution if §; € [0, 1)and g, €(0, g(1)].
but for &, = 0 and g, = ¢(1) the solution is the set (0, d'] and [d", o), respectively,
where d’ and d' are some positive numbers.

Remark. If

a < g(e) <ae™ with 0<g,0<b<1,

then one can prove

'’ . aj(l_b.i)z P .
di<d Sdz: d‘l_—“_—Z(l+bj)’ i=12
if ¢(c) = q(cy) = gq(1) for 1 > ¢ 2 ¢y and ¢(c) < g(e¢y) for ¢ < ¢, then
. v _ (1)
SRR (B

Theorem 2 remains true if g(c) satisfies (15b), is lipschitzian in [0, €] for some
£ € (0, 1), piecewise lipschitzian in [e, 1] possessing there a finite number of j jumps, ‘
and strictly monotone. This can be shown by using (21).

2. The practical solution of the identification problem

2.1. Firstly, a stable method of good approximation is needed for solving the
direct problem (1), (2) — to calculate c(d, r) for given d(r).

(a) Discretizing the two-point boundary value problem (see [16]) we arrive at
a system of algebraic equations. The latter may be solved by the method of con-
jugated gradients (see [17] and the references there) or Newton-like methods [18].
Here it is advantageous to use gradient-free algorithms as [19}, [20]. In all cases,
difficulties caused by strong nonlinearities may be attacked with use of continuation
processes [18], [35]. A natural way of introducing a continuation parameter # is to
replace ¢; in (1) by g, t € [0, 1]. Another difficulty for the numerical solution is
the usual stiffness of equations (1), thé occurrence of boundary layers. This can
necessitdte the use of nonequally spaced grids for the discretization [21].
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(b) ‘An alternative Way of solving' (1) (2) is'the use of direct shooting methods
[’)2] (see also [23]): This consists in solving a series of initial-value problems for (1);
where the starting values at —1 are adjusted so as to satisfy the conditions at +1.
That is, as above a system of nonlinear algebraic equations has to be solved but one
of much less unknowns. Moreover, for the solution of the initial value problems
a number of good methods is available which are developed for stiff'systems [24]:
First approximations to the starting values needed 'at —1 may be found from the
measurement data g or from previous calculations with a nearby d(r). In difficult
cases again a continuation process may help where the continuation parameter con-
tinuously changes the length of the integration interval from O to 2 and, simul-
taneously, the right-hand sides from 0 to g;.

Storage requirements are much less for the shooting method Only vectors of
dimension 2z must be handled. For the over-all discretization considered in (a) it
would be economic to hand over the set of all c-values as first approximations to the
next calculations corresponding to a perturbed @(r). But this will turn out to be too
expensive with respect to storage space, for instance, if a series of expériments was
carried out for sets of different outer concentrations and temperatures (2), and the
measurement data for only one set (2) are too. poor for the identification of d(r).

Therefore, shooting methods look quite advantageous, but not every problem
can be solved by them. (This occurs if the initial value problems for (1) are unstable
or nonuniquely solvable, which is not excluded by (5) and .indeed happens for some
source terms g used in practice.)

(¢) In the later stages of the search for d(r) (described below), where c(d;, r)
changes only slowly, a serious competitor to the above mentioned methods of sol-
ution of (1), (2) is a simple Gauss-Seidél type iteration with relaxation parameter.
The latter may be chosen by some additional calculations minimizing a. cost function-

“al including the number of iterations ,carriéd out and the value of defect reached
then, .

To end this point we mention that stiffness problems can be softened by elimin-
ation of the temperature equation (if present), because diffusion coefficients and heat
conduction coefficient differ usually by some magnitudes. Such an elimination is
always possible owing to a special structure of (1).in chemical problems.

2.2. The minimization of the functional (12) is the next task once the solution
of the boundary value problem (1), (2) has been settled.

(a) The first question arising is whether (12) is a useful form of funcuonal or
if another one should be used instead.

If many experimental data g are given for one set of outer concentratlons 2
such that a good smoothing fit ([25}-[27]) ¢ can be computed from g, then one can
take (12) (or rather a discretized version of'it, ising a quadrature formula). This has
the advantage- that; tising fairly smooth functions, one tries to approximate another
smooth function by varying d(r). On the other hand, this means that one tries to
come close to a function ¢ which, possibly, is not a solution of any differential

G

icm

IDENTIFICATION OF DIFFUSION COEFFICIENTS 375
equation (I). Therefore it seems better-to-carry out the: process of densifying of the
available-information not up to the erd, but to: perform only the-first natural step:
to calculate mean values in the case where several experimental results are given for
the same qnanﬁt;y As the functional for the 1dent1ﬁcat10n of d(r) we then t.ake T

@ f@)= Z(guk—cm oy um}J(gn “'g (1)) Wk

v, (?33— 2.
1

Here w’s are We1ghts proportlonal to thc measurement accuracy of the correspondmg
measurement value (and if mean values are used, the number of experimental
values given for that quantity should be taken into account, too).

If (12) is used, then fitting is done first (not looking at the mathematical model
(1) of the process)-and identification next. If (22) is taken, then fitting is carried out
through solutions-of (1) and identification is done at the same time.

In any case, to get fuller information about the pOSSIblhtlcs of 1dent1ﬁng some
quantity one has to formulate several minimum problems, to interpret and compare
the results.

| et r)dr); :

E/?!-

2.3. The next question is, in what form to take d(r). From experience, and
theory as well, it is known that one should not minimize the chosen functional on
the domain of all possible d(r) but on a compact subset. The smaller this subset, the
better. Therefore a good approach: is to search for a d(r) possessing some parametric
form (and'not to try to find some general function). If additional knowledge does not
suggest any such form, take cubic splines. As the first step in finding d(r), determine
only one parameter for every dy(r). Starting from this it is easier to determine more
parameters. Continuing in this way, the number of parameters can be raised step by
step. An important question (actually, a very difficult one of stochastics) is where
to stop this kind of projection-iteration method (*). Of course, one should not try to
determine more parameters than the number, say m, of measurement data occurring
in (22) (i.e. the number of squares in (22)). Naturally, a reason to stop is the occur-
rence of nonuniqueness — if this can be detected during computing. From experience
in fitting of equidistant experimental data by spline functions there was gained the
rule of thumb [27] to take about four points per spline. Carried over to our fitting
(and identification) problem, this would mean that the upper number of parameters
to be determined could be about a fourth of the number m of measurement data.

It may happen very well that already the determination of only one parameter
for every d,(r) is not possible because of nonuniqueness. In such a case only some

(") Added in pro of. This question has been experimentally considered in the report
by the author Numerical experiments on the id ion of heat ion cooefficients,
Proc. Summer School on Nonlinear Operators, Berlin, DDR, 1977 (in print).
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further information helps. Either more experimental results must be delivered or
there must be a reason to select a special solution between the possible ones, e.g.
that with a minimal distance from a given point. Then Tychonov regularization [28]
is helpful. This method can be applied to détermine any given number of parameters,
but rather should not be applied without an interpretation for why and how it is
done.

2.4. After the parametrization of d(r) we arrive at a well known situation: the
sum of m nonlinear squares has to be minimized by varying p parameters, p < m

Hence, one of the newer developments [29], [30] of the Marquardt algorithm
[31], [32] will ensure an efficient solution of the problem. Derivatives needed should
‘be calculated approximately from finite differences. Usually a projection has to be
carried out to meet conditions as 0 < dyin < di(r) < daax and, possibly, smoothness
conditions. The choice of the Marquardt steplength and direction parameters for
linear side conditions is discussed in [33].

An alternative way is the minimization of (12) using a gradient procedure.
Once the numerical solution of the equation adjoint to (1) and (12) is managed,
the gradient of (12) can be calculated [34] (and this can be done flexibly for several
functionals). But the gradient method becomes less efficient in the vicinity of the
minimum and in the presence (usual for such identification problems) of deep valleys
in the relief of the functional.
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