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1. Introduction

Let 9B be a Banach space of continuous functions u(x),'x € R,

A one-parameter family {u(t)} = B ([w(®)](*) = u(x, t)) (we do not always
write down the “space” variables x) is seeked as the solution of the initial value
problem

(D u = Au+G@t)u, u() =u,, 0<t<T.

Here, A is assumed to be a linear differential operator from B, < B into 8 which
does not depend on the “time”-variable ¢ (for convenience):

G() (0 <t < T)are assumed to be nonlinear operators from B into 8. Thus
(1) defines an initial value problem with a semilinezr partial differential equation
(or a system of equations). '

For the moment, let the operators G(z) be uniformly and globally Lipschitz-
continuous, i.e.:

) IL:  |IG@Ou—G@)w| < Lju—-v|, Vu,0eB,Vtel0,T].

Assume that there are uniquely determined genuine solutions of problem (1)
for all uo €D < B, which we denote by

u(t) = Eo(up, 0<t<T, Eo(t): D—B.

The operators Eo(z) are called the “solution-operators” of problem il) on D,
Obviously, the mapping [0, fI’]W 9B is continuous for every fixed u,€D.

Let us now consider the linear problem belonging to (1), i.e. the problem
(©)) u = Au, u) =uy, 0<t<T,
using the same operator 4 as in (1), which we assume to be properly posed; i.e.;

[41]
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we assume that there are genuine solutions for all u, € § & B and the solution-
ense

operators ESi™ () of problem (3) are uniformly bounded:
@ IES™ @I < %0, Ve [0, T].
Following an elementary theorem, there exist certain unique linear and continuous
extensions EU™(¢) of the operators E§'™(¢) from the domain § to the domain 98:
EUNG): B B, linear, 0<t< T,
EO™() = E{™(1) on§,
[ES™ (@) < .
As it was shown by Thompson [I], problem (1) is equivalent to the problem of
solving the integral equation

t

u(t) = E (Yo + § END(1—5)G(Du(x)dr
0

if uy € D. Writing this with use of the seeked solution-operators Ey(t) of problem (1),
we have )
t

®) Eo(to = EM™ (o + | EU™(1— DD Es (Do .
0

Using relations (2) and (4), it immediately follows from (5) that the relation
max || Eo(2)ug — Eo()o|l < #ollto—2oll + 0 LT max || Eo(t)uo—Eo(t)vol|
0<t<T 01T

holds. Therefore the nonlinear solution-operators Eo(t) are uniformly Lipschitz-

continuous on D, at least for 7 <

. . . %o
vl with the Lipschitz-constant Tom IT

Using the same elementary theorem as for the linear problem, it follows from
this Lipschitz-continuity that there are continuous extensions for the nonlinear
solution operators which are defined uniquely on every domain i < B with D S u.

nse

The sets {u(z)} which are generated by the operators E®™(¢) and E@®)

u(t) = E9(thuy, ugeB,
u(t) = EQ)uq, 1o el
are called “generalized solutions” of problem (3) and problem (1), respectively.

It often happens that not only the genuine solutions but also the generalized
solutions are of practical interest because of the fact that the data of a given physical
problem often do not fulfil the regularity conditions of an existence theorem belong-
ing to the mathematical formulation of the physical problem.

But also the Lipschitz condition (2) often is not fulfilled, although the existence
of a unique solution may be guaranteed if we use an appropriate definition of a
“solution”.

Therefore one is interested in solving nonlinear problems numerically also in
cases of occurring irregularities of the kind just described.
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On the other hand, numerical methods are often constructed heuristicallyA
under the assumption, which often is not mentioned but implied, that all the data
and operators occurring in the problem are sufficiently smooth, in particular with
respect to the construction of error estimates.

In this paper the problems arising from this contradiction shall be discussed
in the case of solving initial value problems by means of difference methods of the
kind

k k
© D Aot Y By sy = 0.
y=0 v=0

This leads to the following questions: .

1. Assume that a given method converges (for decreasing step-size) of a certain
order towards the exact solution if the initial values are sufficiently smooth (and
if the operators G(¢) are Lipschitz-continuous). Does the method also converge
in the case of less smooth data and (if it converges) what is the order of this con-
vergence?

2. Is it possible to describe the influence of irregularities concerning the oper-
ators G(¢) under the assumption that the initial values are smooth?

3. What are the consequences if the regularity both of the operators G(r) and
of the initial values is affected (combination of question 1 and question 2).

Question 2 (and therefore also question 3) is not yet solved in the case of partial
differential equations. ‘

For A = O (the zero-operator) and B = R, (1) becomes the ordinary non-
linear first order problem

(@) u =g u, u0)=u, 0<t<T.

(g(t, ) : = G(t)u) for which question 1 (and therefore also question 3) does not
arise. :
For linear problems (G(¢) = @), question 1 was answered by Peetre and Thomée
[2] in 1967 with use of methods of interpolation theory.

It ist well known [3] that a difference scheme which is consistent with a semi-
linear initial value problem, having Lipschitz-continuous nonlinearities G(¢), con-
verges if and only if the corresponding linear scheme (approximating the correspond-
ing linear initial value problem) conyverges.

Thus, a Lipschitz-continuous nonlinearity does not influence the occurrence of
convergence.

It was shown in [4] (by using methods of approximation theory) that also the
order of this convergence will not be influenced by the occurrence of a Lipschitz-
continuous nonlinear operator G(¢). Thus the orders due to Peetre and Thomée
are also valid in the Lipschitz-continuous semilinear case.

Therefore we restrict ourselves to the treatment of question 2 in the case of
ordinary differential equations. :
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2. Convergence of difference schemes for ordinary differential
equations with non-Lipschitz-continuous right-hand sides

In 8B = R we consider the initial value problem (7). We assume that g is coritinuous
on the compact set

D={t,u),0<< T, u<b}.

The difference scheme (6) now appears in the form
k

k
®) Z Ayl th Z b,8(thiys Uniy) = 0,

y=0 v =0
where a,, b, are real constants (a; # 0, [ap|+|b| > 0). We assume that the initial
set {uo, Uy, ..., tgx_, } is permissible, i.e.

O] Im{ug, ug, oo thos} = {g, tigy ooy tig}
k-0
If one assumes that g is Lipschitz-continuous with respect to u (i.e. the assumptions

of the Picard-Lindel6f theorem are fulfilled), the condition of consistency leads to
the conditions

k k k
Za,-——O and Zva,-f- Zb, =0,
y=0 v=0 =0

which, after introducing the polynomials
k

k
W=D ak, o@):i=y b7,
v =0 =0
can be rewritten in the form
10 o) =0 and o N)+0o() =0.

The stability condition due to Lax and Richtmyer [3] (formulated for the k-step
method (6)) (see also [3]) gives for the special case considered here:

o) =0=1A]< 1,

1
an 0(A) =0 A |A] = 1 = Ais a distinct root of g.

(10) and (11) are the main conditions of the convergence theorem due to Dahl-
quist [6], which thus appears as a special case of the Lax-Richtmyer-theory, general-
ized to semilinear problems.

It should be mentioned that for this special case of difference schemes for the
solution of ordinary differential equations, conditions (10), (11) are of purely alge-
braic structure. Therefore one can look at these conditions independently of regu-
larity assumptions.

Furthermore, let us emphasize the fact that the convergence of the method is
not disturbed if there are, besides the root 1, = 1 (which always occurs because
of condition (10)), further (distinct) roots of modulus one, provided that the uni-
queness of the solution of problem (7) is guaianteed by the Lipschitz condition.
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E.g.: In view of the above mentioned Dahlquist-theorem, the well known
midpoint rule
12 Uniz—Un—2hg(tys1s Vpsr) =0
k=2,a,=1,a,=0,0, = ~1,b, =0,b; = =2, b, =0)
converges if g is Lipschitz-continuous with respect to u, because condition (10) is ,
fulfilled, and the roots of ¢(4) are 4, =1 and 1, = —1.

Considering the problem

u=glt,w), ul0=0,t>0
with
0 for t=0,
2t for u<0,
g(””):=|zt—4 % for O<u<rs?
l—2t for wu>1¢? }(t>0)’

we see that g is a continuous but not Lipschitz-bounded function.
Nevertheless, the solution
{13) u(r) =42
is unique (Hartmann, [7]). But, if one chooses the permissible initial set #, = 0,
u; = —h?, the midpoint rule gives
tpn = (20H)?,  Ugper = —QR@+DE)? (1 =0,1,2,..);
obviously, for n -+ o, h — 0, nh — ¢, the numerical solution does not converge

to the exact solution (13).
On the other hand, we have the following theorem due to Taubert [8]:

(i) dssume that conditions (10), (11) are fulfilled with the one restriction that
Ay = 1 is the only root on the unit circle;

(ii) assume that the solution of problem (7) is unique.

Then method (8) is convergent (and this result also holds if g is not continuous
but if (8) has a unique solution in the sense of Filippov [9]) (under the additional
and more technical assumption that condition (9) is guaranteed by maxklui—uol

i=1,...,
= 0(h).

For the purpose of this paper, it is sufficient to consider functions g which are
continuous.

Let us emphasize the fact that also in Taubert’s theorem, the uniqueness of the
solution is an important assumption. And the example shows that (also for continuous
functions g) the convergence may be really impzired if there are more roots on the
unit circle than the one (distinct) root A, = 1 (according to condition (i) of Taubert’s
theorem). :

Because of the fact that there are many customary methods having more roots
on the unit circle than the root 4; = 1, the following question arises:
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Up to which border between uniqueness (of the solution of problem (7)) (without
further information) and uniqueness due to the Lipschitz condition is it allowed
to have more distinct roots on the unit circle than the root 4, = 1?

Obviously, this question cannot be answered completely.

Therefore, let us consider some well-known uniqueness theorems (e.g. the ‘

theorems due to Nagumo, Perron, Kamke, Coddington-Levinson) and let us ask
whether the conditions of these theorems imply the permissibility to have more
roots of modulus 1 than the root 4, = 1 or whether they do not.

In this context, let us quote Perron’s theorem [10]:

(i) Assume that the inequality

Ig(t’ u)—g(’! ‘U)] < h(t5 !uﬂz’])

holds for all (¢, w), (t,v) € D, where (¢, 8) is.a continuous function (for all t € [0, T}
and for all 6 = 0) with the property h(t,0) = 0.

(ii) Assume that Z(t) = 0 is the only solution of the problem

1=kt %, 10 =0, 0<
forall y with0 < y < T.

Then the solution of problem (7) is unigue.

In Kamke’s theorem (which comprehends the Nagumo criterion), f is allowed
to be discontinuous at the point # = 0 (e.g. Nagumo: E(t, 8) = 6/t), and in the
theorem due to Coddington and Levinson, / has to be continuous with respect to &
for every fixed ¢ and measurable with respect to ¢ for every fixed 4.

It was Olech [11] who showed in 1960 that the theorems of Kamke and Cod-
dington-Levinson are not more general than the Perron criterion:

If the assumptions of Kamke or Coddington-Levinson are fulfilled; one can
find a function w, fulfilling all the conditions which occur in Perron’s theorem with

t<y

respect to h.
This function is given by

14 wylt, 8) i= s Ig(t u)— g(t o).

Indeed, this function is continuous for 0 <t<T,820,and i() =0isa (trivial)
solution of )
(1s) L=w,t, D, M0 =

If i(t) = 0 is the only solution of (15), we will czll w, 2n “Olech function”.
Therefore, let us now assume that the uniqueness of the solution of the given
problem (7) is guaranteed by the property that the function w, (constructed from
the given function g by (14)) is an Olech function.
, often is a monotone increasing function with respect to the second variable
(and then it can be replaced by the function

g =, sup Je(t,w—g(t, 9.
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Furthermore, we have the trivial property
(16)
and if o, is an Olech function with respect to g, also cw, is an Olech function with
respect to cg, provided that 0 < ¢ < 1.

On the other hand, it does not necessarily follow from the property of w, being
an Olech function that also cwy is an Olech function for all ¢ > 1 (counterexamples
exist), But there are many classes of problems for which this implication is true.

An answer to our question posed above can now be given by the following
theorem (see [12]).

TueoreM (Taubert, Hamburg). Consider the initial value problem

=g, uw, u@ =u, 0<Lt<gT

Ve =const >0 e = cog;

and assume that
(Y) the function g is continuous on D,

(I) the uniqueness of the solution of the problem is guaranteed by the property
that w, is a monotone increasing (with respect to the second variable) Olech function,

(1I) for all T > 0 also tw, is an Olech function with respect to g,

(IV) the Dahlquist conditions (10), (11) are fulfilled,

N g—upl = OB for A -0 (i =1, ..., k);
then the difference scheme (8) is convergent (i.e.: also more roots than A, = 1 are
allowed to be of modulus 1).

We omit the proof; we just discuss the confining condition (HI) which describes
the above mentioned border more precisely:
For this purpose, we treat the example

[0 ~ for t=0,

t for u<0,
glt,uw) = %t_”lti for 0<u<s? t>0
-1 for u>1t? -

2

and u(0) = 0. )

This function g is continuous and the Nagumo criterion is fulfilled. The unique
solution of the corresponding initial value problem is

u(t) = 1> (=: condition (I) is fulfilled).

The difference scheme
an Unyo = Unt4hGus 1 —2hgn s
fulfils conditions (IV), (V) of Taubert’s theorem.

We have

u =0, u =h,

0 for
wg(t, 8) =1 8/t for
t for

=0,
0<d<gt?
&> } >0,
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and &, is an Olech function (=: condition (II) is fulfilled). However, the problem
i=rw0 D, H0)=0

is for 7 = 2 not only solved by 1(t) = 0 but also by Z(t) = at? (Vae(0,1]),

and for T > 2 we have (besides () = 0) the solution )= —;[— t2. Thus condition

(IM) of Taubert’s theorem is not fulfilled.

Indeed, the solution of the difference equation (17) (applied to our example)
has the properties

Uan < 0’ Uznt1 P (n+1)2h21
which imply non-convergence!

Condition (III) therefore is an important condition. On the other hand, the
conditions of Taubert’s theorem are only sufficient for convergence. For certain
schemes, condition (III) can be omitted, e.g. for

—ay=a,=1, a=0@=1,.,k-1), b >0.
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O TOYHOCTH CXEM INEPEMEHHLIX HATIPABJIEHMH
151 YPABHEHHA TEINJIONPOBOJHOCTHA
B IIPOM3BOJBHOM OBJIACTH

A.B. IT'VJIUH, 1.B. PPA3NHOB
Hucrmumym puraadnosi Mamenamuxu AH CCCP, Mockea, CCCP

B pafote ycrasoBieHa cxomumocts cxem Hyrmaca~Paudopma (IL.~P.) [1) u IInc-
mena-Paadopma (II.-P.) [2] AT [BYMEPHOro YpaBHEHMA TEILIOIPOBO/HOCTH
B IIPOM3BONBHOM 0GJNACTH B Cilydae NEPBOW KpaeBol 3afaun B CETOYHOM HOpME
L, co ckopocramu O(v+h*?). 3pecs h= max(hy,hs), hy —Imar mpocrpan-
CTBEHHOH CeTKM B HANPABJIEHHMM OCH Koopmuar 0x,, «=1,2, v — mar cerxu
IO BpEMEHM.

Cxempt [1], [2] paccmMaTpHBAIOTCS 3/1ECh KAK COCTaBHBIE CXEMBL, ob6aaronme
CBOMCTBOM CyMMapHOH armmpokcumarm [3]. YeroHusBOCTE ¥ CXONHMOCTE HX yCTa-
HOBJH2 JMIIb HPH IPEIIOJOMKEHHH HEOTPAIATEIBHOCTH COOTBETCTBYIOMMX Ce-
TOUHBIX ONEPATOPOB. TpeGoBaHUe NEPECTAHOBOYHOCTH OIEPATOPOB HE HCHOJBIY-
ercs. B ya/ax mpurpaHAUHEOM SOHBI HCTIONE3yeTcs ammpoxcmvarms 13 [4], [S].

IIpHBOLATCS OLEHKM CKOPOCTH CXONMMOCTH CXEM I.~P. u II.-P. B ciayyae
Pa3pEIBHEIX KO3MDGbMIMENTOB, TOJPHEIX M CEPHYECKHIX KOOD/WHAT.

1. MocranoBKa 3agavd

1.1. Mocranorka Mcxopmuoit 3agaqau. Ilycts G — OTpaHMYEHHAS obacth
B mockocrH 0x,x, ¢ rpamanei I G= Gu I TIpenoyoxmm, II0 NePEcedcHHe
o6macty G 060t IpAMOH, IIPOXOJATIEH Yepes TOUKY X = (x4 %,) € G mIapajIesns-
HOH OCH KOOpmEar 0X,, COCTOMT JHMIL M3 OFHOTO wmrepBana A,(x). Ilycrs
QOr=Gx(0<t<gT), Or= Gx(O<t<D).

Tpebyercss HalTH HENIPEPHIBHOE B O pemerme u = u(x,t) 3a7a4n

oulot = Adu+f(x,1), (x,t)eQT, 3
u=wv(x,t), xelI, 0<t<T, u(x,0) = u°(x), xeG.

0
OTHOCUTETBHO TJIAMKOCTY BXOJHBIX HAHHBIX — Gyuxouit f, v, u°, a TAKOKE

5

(1.1)
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