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M Introduction

In this paper we study a maximum principle in the sense of R. S. Varga’s definition
(cf. [1], another formulation of this principle, cf. [2], [3], [4]) for nonlinear systems
of algebraic equations and for nonlinear systems of ordinary differential equations.
The class of equations which we study arises from an approximation of nonlinear
elliptic equations and nonlinear parabolic equations.

In the first part of this paper we show that R. S. Varga’s lemma (cf. [1]) on
a maximum principle can be also applied to nonlinear systems of algebraic equations.
Using R. S. Varga’s results, we prove the maximum principle in the sense of Defi-
nition 2 for systems of equations of the form (1). Next, we show that the difference
scheme (7), (8) satisfies the maximum principle in the sense of Definitions 1 and 2.
In the second part we consider the maximum principle in the sense of Definitions 3
and 4 for nonlinear systems of ordinary differential equations. Using this principle,
we prove convergence of the method of lines for a nonlinear parabolic equation.

1. A maximum principle for nonlinear systems of algebraic equations

We consider the following system of nonlinear 'equations:
(0)) Jx)=b, beR",
where
X = (X1,%, ..., X8) ERY, b= (by,bs,..., by)* € RY,

f(x) = (fl(x)sfz(x): -“:fN(x))*, fe CI(RN): f(O) =0.
Let M(x) be a matrix with entries My(x) = f2(xQ),0<Q; <1,k = 1,2, ...,N
and let § denote the subspace of RY spanned by the vectors diefer, e, ..., en},
J=12..,r 1<r<N, ¢ =8y, b, ..., Om), i=1,2,...,N. The project
of a vector x on the subspace S is denoted by Psx, where Ps = diagonal (d;, ds, ...
< dy),di=1ife;e Sand d; = 0ife; ¢ S.
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DeriNITION 1. A Vector-functit;n f(x) satisfies a maximum principle with respect
to the subspace S (in symbols, £ & M) 1f and only if every solution y of f(x) = Psb
satisfies the inequality
@
where [ x| = maxix;.

If for every b & RY and for every solution % of f(x) = Psb there exists a matrix
A(%) such that f(%) = A(X)% and A(X) satisfies the maximum principle given in
[1], then fe M. It is clear that we can take A(X) = M(%) and then fe My if
Me M. .

In [4] G.T. Mcellister proved a difference analogue of a maximum principle
in the form of an a priori estimation for a quasilinear elfiptic equation. This maximum
principle directly implies convergence difference methods. Below, we also consider
a maximum principle as an a priori estimation of the form (3) for nonlinear systems
of equations (1).

DEFINITION 2. A vector-function f(x) satisfies a maximum principle in the sense
of an a priori estimation with respect to the subspace S and a number K (in symbols,
f € M(K)) if and only if every solution y of f(x) = b satisfies the inequality

©)] I¥] < IPsbll+KI(E—Ps)B|
where E is the unit matrix.
THEOREM 1. If for every b € RY and for every solution X of f(x) = b there exists
a monotone matrix A(%) and a vector & € R¥ such that
fG) = 4@,
AXE > PsE, £ =(1,1,...,1)%
AR > (E-PE, )< K

lyl < |Psb]| forany beR",

®

for any & € RV,

@

then f € Ms(K).
) l”raof. Let U=g—X, V =g+x, where g =
. easy to verify that
AU = Ag—A% = |Psb|| A&+ |(E—Pg)b] da—b
> | Psb]| Psé+(E—Ps)bl|(E—Ps)é—b > 0
AV = Ag+ A% = ||Psb| A&+ |(E—Ps)b| 4a+b
>‘ || Psb|| Ps&+ || (E— Ps) bl (E—Ps)é+b = 0.

Since the matrix 4(X) is monotone, then g—x
I#] < |Psbll+ Kl (E—Ps)b] .

| Psb||&+ | (E—Ps)blla. Tt is

> Oand g+x > 0. Therefore we have

2
Let us consider the following boundary value problem:

(5) G(d, .B) U, Uyy Ug, umz!uﬂﬂ) = ‘P(“:ﬁ)’ (“a ﬂ)EQ,
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du
© A )+ B By = p(@, ), () < 60,
where = {(a,f): 0< w < ay, 0<f < a,}.
ASSUMPTIONS.

1°. The function G(x, 8, r,s,t,w,z) is defined in & x RS and continuously
differentiable with respect to the variables 7, s, t, w, z.

2°. G(«, $,0,0,0,0,0) = 0 for (x, A e and Gu(at, B, 7, 5,1, w, )
(a, Bor, 8, ¢, w,2) € Q% R5.
3°. There exist functions u(r, s, t,w,z) > 0,%(r, s, 1, w, 2) > 0, K(r, 5, 1, w, 2),
L(r,s,t,w, z) and constants M,; > 0, M, > 0 such that
G;,(a, p.r,s,t,w,2) = u(r,s, t,w, z),
G (a,B,r,5,t,w,2) = (0,8, t,w,z),
|Go(a, Byr) s, t,w,2)| < K(r, 5,8, w,2),
1G(at, By7, 8,8, w,2)| < L(r, 8, t, w, 2),
K(r,s,t,w,z) < Myu(r,s, t,w, z),
L(r,s, t,w,z) < Myv(r,s, t,w,z),
for (x, B, r,s,t, w,z) e X R5,
4°. The functions A(«, 8) > 0, B(a, §) 2 0, ¢(x, 8), y(«, ) are bounded in
482 and Q, respectively. 4(a, )+ B(«, f) > 0 for (a, f) € 092.

5°. There exists a point (, B) & 82 such that B(x, B) > 0 or there exists a point
(=, ﬂ)eQ such that G.(%, 8,r,s,t,w,z) < 0 for (r,s,t, w, 2) € R®.

Let @, = {Gh,kh): i=1,2,...,m—1, k=1,2,..
nh, ho = min{Mi!, M5*}, 08y, = {(ih, kh):
k=0,n i=1,2,...,m—1}. )

The following difference scheme approximates the equations (5), (6):

< 0 for

on—1}, ay =mh, a, =

i=0,m, k=1,2,....,n—1 or

™ G(ih, kh, 0, 80, 0%0us LiDu, La%y) = @, (Fh, k) € £,
14_0_(% —9;1)+BigDio = Y0, i=1,2,...om—1,
Aok o
®) (@ox—91)+ BokYor = Yox, k=1,2,...,n—1,
Aln .
T(ﬂin—vi—l,n)"}'Binﬂin = Yin> i=1,2,...,m—1,
Amk — _—
O+ Bk Ok = Pmics k=1,2,...,n-1,
where
N 1
vy = o(th, kh), vy = ﬂ(vi+l.k—'vi—l,k): 0%y = b (711 k+1— P k-1)>

1
Lioyg = 3 @is1,6— 200 +01-1,1)»

1
Loy = =) (1, k41— 200+ 04, 1-1) -
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Now, we rewrite the difference scheme (7), (8) in the form (1). For this purpose,
we introduce the following notation:

N = (m+1) (r+1D—4,

Xont Dk+i = Viks

P =P1,P2s s PN)s P+ ks = (h, kh),
I =ItulPuPul4,

r={1,2,.,m=-1}, P={m+hk:k=12,..,n-1},
B ={m+Dn+iti=1,2,...,m—1},
I* = {m+Dk+m: k=1,2,..,n—1},
——-G(pj, Xjs 51361, 5275], Ll Xis szj) for J¢I’
A .
(P’) S (o~ Xy man) + B(0) X for jel’,
A(p,> .
Xy~ Xy 1)+ B X for el?,
A0 = (=15 1) +B(p)) % J
A(pj) (= Xy —m1)+ B2 % for jeld,
A(PJ) (ty—x5-1)+ B % for jel*,

JM) = {j: B(p) > 0forjelor G(p;r,5,t,w,2) <0 forj¢ I}.
For the vector-function f(x) we have My(x, Q) = fi,(xQ), where

M= ﬁ%)—+ﬂ(p;) for iel,

2
My = -T(GHGi)—Gi for i¢lI,
Miiz1 = = 4 G'¢ 2h Gi for i¢l,

1,1

Mi.i;m:ﬂ. = _FGZ+~%G‘ . for i¢I,
Mitimes = _ﬁ%ﬁ)_ for iel’,
M imey = —‘—4%—1 for iel?
My = —ﬂlfl)' for iel?
M= -ﬁt%!) for iel?,

= G(pi, 1,5, 1,W,2).
The remaining entries of M are equal to zero.

THEOREM 2. If there exists a point p; € 08, such that B(p)) > O or there exists
a point p; €2, such that G.(p;,r,5,t,w,2) <O for (r,s,t,w,2) € R%, then the

e ©

icm

MAXIMUM PRINCIPLE FOR NONLINEAR EQUATIONS 73
matrix M(x, Q) is positive type (cf. [5]) for every x & R¥and Q = (Q1, @2, - 00>
0<Q;<1l,i=1,2,...,N.

ho, Mik <0ifi # k

Proof. From assumptions 1°-5° it follows that for 4 <
N

Z Mlk

that for i ¢ J(M) there exists a k € J(M) and a sequence of nonzero elements of A
of the following form:

0fori=1,2,...,N and Z My > 0 if ie J(M). It is easy to verify
k=1

Mﬁ;’Mi;iz’ ceey Mi k-

Hence, the matrix M satisfies the conditions of the definition given in [3] and the
matrix M is positive type.

From Theorem 2 follows

COROLLARY 1. If A(0, ) =0, B(e,B) =1, y(a, f =0 (or v(a,p)<0)
for (a, ) € 02 and p(a, B) = 0 (or @(x, f) < 0) for («, B) € 2, then the solution ©
of the difference scheme (7), (8) is non-negative (or non-positive) in 200%2.

Remark 1. Theorem 2 and Corollary 1 are a difference analogue of the theorem
given in [6], p. 165.

Let K(M) be a non-empty subset of J(M) and let S denote the subspace of RY
spanned by the vectors e; for ie K(M).

TuEOREM 3. If % € RY is a solution of f(x) = Psb, then

%] < | D*Psb],

where D! = diagonal (D}, D3, ..., Dy),
1 for i¢K(MD,
Dl =l—-G for iek(M)-I,
B(p) for ieK(M)nI.

Proof. Let X be a solution of f(x) =
0<Qr<1l,k=1,2,..., Nsuchthat
M(%, Q)% = Psb and D'M(%, Q)X = DPsb.
From Theorem 2 it follows that the matrix D*M(%, Q)— D? is positive type, where

sb. There exists a Q

= (Q1, @2, s OW)s

D? = diagonal (D}, D3, ..., DR,
0 for i¢JM), -
pr={-G for ieJ(M)-I-K(M),
B(p) for ieJ(M)nI—-K(M).

Furthermore, (D'M—D?E = Pst. Hence [(D'M—D*7'Ps| <1 (cf. [1])- The
monotone matrices D'M, D'M—D? satisfy the inequalities:
D'M-D*< D'M,
(D'M)t < (D M—-D¥H 1,
Then from Corollary 1 and Lemma 1 given in [1] it follows the following inequality
%] < |D*Psb
which ends the proof.
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Let X — 892 be a domain and let

1 for (x,p)e’,
A0, f) = {0 for (a, ) cd@—2,

1 for (a,p)edR—2,
B, f) = {o for (a,f)eZ,

KM) = {jel: pjedR—-2},
(o, f) = 0 for (¢, p)eZ, @(«,p) =0 for (x,f)ef.
From Theorem 3 follows
COROLLARY 2. A solution v of the difference scheme (T), (8) satisfies the in-
equality
maxovy| <
Qp "
Remark 2. If X is the empty set then the system of equations (7), (8) satisfies
the maximum principle in the sense of Definition 1.
THEOREM 4. If A(x, ) =0, B(x, p) =1 for (a,p) € 882, then the solution v
of the difference scheme (7), (8) satisfies the following inequality:

max |ygl.
20y—Zk

® max|og| <
On

maXIWtkI +°XP(V) mﬁxl¢ik|

where

2 2
Y= mjn{K+]/K 2% L+VI*+2 }
7 v
Proof. If Xemiiyk+t = On then x is a solution of the following system of
equations:
(10) M(x,Q)x =15 fora certain Q,
where
bemrvnes = —o(ih, k)  for  (ih,kh) e @y,
) b(m+1)k+i = ‘lp(lh, kh) for (lh, kh) € th
Now, we notice that the assumptions of Theorem 1 are satisfied for & = («s, t, ...
..., Oy)*, where
{exp )= A=Y,
o =

i=12,..,m, _ k+/Eiop
%y !

j=m+l,m+2,.,N, 77 7
Setting Xems 1yisx = Vi, We can take y = (L+1/L2+2v ).

3. A maximum principle for a system of differential equations

Let us consider the following initial value problem:
do
(¢5)) Po = Wt__A(t’ )0 =b(), 0<t<T,

(12) 2(0) = ¢,

a © )
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where o = (9,02, ...,9")%, b = (6%, 0% ..., 0", ¢ = (', ¢ ...,
i,j=1,2,..,N.
We assume that the entries of the given matrix 4(z, ¥) and the vector b(z) are

continuous in {0, T).

CN)*, A= (Ai])’

DEFINITION 3. An operator P satisfies the maximum principle with respect to
the subspace S (in symbols, P € 9%) if and only if every solution o(f) of the problem

(13) —%ﬂt— = A(t,v)v+Psb foranybeC(K0,T)), 0<t< T,
(14) 2(0) = ¢,

satisfies the inequality

15 ol < max {|Psbll+ficll, |Ps?]},

where Jjo|| = jmax ax o' ().

THEOREM 5. If an N x N matrix A(t, v) is positive type and

N
Myt =1 for ees,
=1

then P e M.

Proof. There exist integers j, ke {1, 2, ..., N} such that '

max max v (t) = o/(t,),
1<ig<N 0st<T

min min o'(¢) = o%(t,).
1<i<N 0<t<T

If t,, t, € (0, T) then from (13) it follows that

i o -for  jél,
(16) ZAJ;(to,”(’o))‘” (ta) = { —b(t) for jel .
and

E‘*\ for k ¢I,
an ;Am(tu o(t)) v (1) = { b)) for kel

where I = {i: ;e S}.
Since the matrix A(¢, v) is positive type, then for ?/(to) > 0 and o(#,) <O,
we have

N
. ) [0 for j¢lI,
¢) wcto>ZAﬁ(ro,v><‘_b,(to) o el
. for ké¢l,
19 (rI)LAk‘(rl,v)>{ s e kel

If j, k ¢ I then inequalities (18) and (19) are contradictory to (16) and (17). From
(18) and (19) it follows that

o) < —H (o) < |Psh|  for i=1,2,...,N, 1e(0, 1),
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and
o'(t) > —b*(t) > —||Psb| for i=1,2,....,N, te(0,T).
Hence, we have inequality (15) and this ends the proof.
DEFINITION 4. An operator P satisfies the maximum principle in the sense an
a priori estimation with respect to the subspace S and a number K (in symbols, P
€ M4(K)) if and only if every solution o(z) of (11), (12) satisfies inequality
@0 loll < llell +11Psbll +1Psv)+ K|(E—Ps}b]  forany be CKO, T}).
TueoREM 6. If an NxN uniformly monotone matrix A(t,v) satisfies the
inequality
A(t:v)£>PS£ fOI' 15(0,n,§=(1,1:-v-,1)*
and if there exists a vector & € RY such that |a|| < K and
A@t,0) &> (E—Ps)E,
then P e Ms(K).
Proof. Let v(t) be a solution of (11), (12) and let
g = |IPsbll&+ [ (E—~Ps)b|a.
.From (11) we have

@D do

b = || Psh| A&+ "(E—Ps)b"A&:F-;h—ib-

— ., _dp
AlgFo) = AgF -
Now, suppose that at some point #; € (0, T)

max o'(t) = v'(t).

o<tsT
From (21) we obtain

A(gt)Fo(t)) = I|Psb| Ps&+|(E— Ps)b||(E— Ps) £ b(%:) > 0.

Since the matrix 4 (¢, ©) is monotone then gFv = 0, and

o] < [|1Psbl+K[(E— Ps)d|
and this ends the proof.

Remark 3. If an operator P & M4(K) then the operator P e IM&(K), where
Py = %—A(z‘, o), Po= % —4(t,v), A, ) = (4, 9), i,j=1,2,..,N,
Ay(t,0) = Ay(t,0) for e ¢ S, A;(t,v) = —Ay(t, o) for e;e S.

4. A method of lines for nonlinear parabolic equations

In the papers [7] and [8] is given an estimation of an error of a method of lines for
nonlinear parabolic equations. Below, we present different estimation of this error
also for nonlinear parabolic equations.

In the domain O = {(x,#): 0 < a < 1, 0 < t < T} we consider the follow-
ing problem:
ou

Vi G(“’ ty Uy Uy, uuu)+g(‘x7 t),

@) a1

((X, t) € QT:

e ©
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23) u0,t) =u(l,t) =0, 0<t<T7T,
24 u(e, 0) =p(0), O0<a<l.

ASSUMPTIONS. 1°°. The given function G(a,t, p,r, s) is continuous in Qr x R®
and differentiable with respect to variables p, r, s, G(«, £, 0,0, 0) = 0for (a, t) € Or.
There exist functions u(p,r,s) > 0, K(p,r,s), L(p, r,s) and a constant M such
that

(25) Gy(a, t,p,r,8) = pu(p,1,5),
(26) Gy, t,p,r,8) <0,

(27) |G,(d, t:P:"s S)] < K(P>r:_s)a
28) K(p,7,5) < Mu(p,r,5)

for (a,t,p,r,s) € Qrx R3 The functions g(, t), y(«) are continuous in Or and
0 < a < 1, respectively.

The following system of ordinary differential equations approximates the prob-
lem (22)-(24):

dvi . i S10 i + . 2 N—1
(29) E"=G(Ih:t:va6”>L10)+g(1h5t)s i=1,2,.., s
(30) Q=0 =0, oh=9p@@, i=1,2,..,N-1,
where
Ne=1, o=(%07,..,0%% o =v(ih), i=0,1,..,N,

;1 ; ;14 i
Slot = 2_h(vi+1_vi—1), Lo =_hT(vi 1—2‘01+0 +1).

From assumptions 1°° it follows that

N
oG(ih, t, 60, 6,60, 0, L, v*
G(ih, t, 9, 610‘,le')=2 (i, 1, 6 60: L )v",

k=0

€29)

for certain 6 = (6o, 0, ..., 0x)-
oG G R
Let 4y =1 for i =0,N, 4 =50 Ay g = SoBT fori=1,2,..,N-1,

the remaining entries of the matrix 4 are equal to zero. Now, we rewrite the system
(29), (30) in the following form:

(32) %:An+b, 0<t<T,
(33) 2(0) = ¢,

where b = (8°, 5%, ..., b%)%, B0 =0 =0, b =g@h, 1), i=1,2, ...N=1, ¢
= (0, p(h), p(2h), ..., p(D)*.
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Let u(a, ) be a solution of (22)-(24) and let v() be a solution of (32),-(33).
From (22) and (24) it follows that
dii

(€D)] v Ai+d+w@k), 0<t<T,

(35) #(0) = ¢,

where %(t) = (0, 1), u(h, 1), ..., u(l, 1))*, w(h) — 0 as fast as k> - 0.
From (32), (33) and (34), (35) it follows that:

ﬂ%”—) = AG—D)+o®), O0<t<T,

#(0)—2(0) = 0.
Now, we notice that the matrix 4 and the vector & = (o, gy ers ON), O = EXP(P)—

—(-yhy, j=0,1, ..,N, y = (K+VEK*+24)/u satisfy the assumptions of
Theorem 6. Therefore we have the inequality |u—v| < Koh?, where K, = const
for u(p,r, s) = po > 0.
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OB YCTOMYNBOCTH OTHOCHMTEJILHO U3MEHEHUI
KPAS OHOH PA3SHOCTHO! CXEMBI

B. BAHEJIBT
Texnuveckust 5Y3, Kapa-Mapxe-Imadm, I'AP

1

Veroitunsocts PA3HOCTHBIX CXEM MCCICHOBAHA OTHOCHTENBHO MHOTHX PasIMYHBEIX
CHTyaluit, HATPHMED, MCCICAOBAHEI YCTONUMBOCTS IO IPaBOi YacTH, IO Hadasb-
HBIM NAHEBIM (eC/H 3a7aua HECTAl[HOHADHA), MO KPAEBBIM HAHHBIM M TIO HM3ME-
HeEuAM Koo drImeHToB.

OfHaKo, MaJ0 M3y9YeH BOIPOC O TOM, KAK H3MEHSETCs PasHOCTHOE DEIleHHE,
€CIIM MEHAETCS PaHmIa 06IacTH KpaeBoi 3anauwy. OTBeT Ha TAKOH BOIIPOC aKTyaNeH,
HAOpUMeEpP, B CJEHYIOMMX CIIyYasax:

(2) YoKe TIpH MONEMpOBAHKMH DEeAJBHOM CACTEMBI 4acTo ofiacTh KpaeBo#
34/139K 33/AHA HETOWHO K3-33 HETOUHOCTH M3MEDEHUH I IO NPHIHHAM yHo0Horo
IPEICTaBICHYS 3aTatd.

(6) s Toro, uToGhI IPHMEHHTS XOPOLIIA BEIYACIHTEIBHEI METOX, MHOTAA
yuportaercs o6JacTe 3afaud.

(8) UmeroTcst safiaum, UpH KOTOPBIX TPaHMNa YACTHIHO CBOGO[HA. Ilpm
STOM HYMHBI CXEMBI, 00IafaroIue CBOMCTBOM YCTORUMBOCTH O M3MEHEHMAM Ipa-
HHDBL.

37ech IPUBOMMTCA TIPOCTOH Ciydal ONHOMEPHOH KpaeBoi 3ajauu.

2
s xpaesoit aa):(aqh nost ypasaenus Itypma-JlunyBuams:
—(px) ) +q@)u = f(x) (x€0,D)
C KpaeBBIMM YCIOBHAME Ju60 Tpersero poja:
a(0)—p(0)u'(0) = Y15
au()+p(Du'() = 72

[79]
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