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INTRODUCTION

The following work began in 1971 as a result of a conversation with-A. Sharma
in which [19] by Subbotin was brought to my attention.

In Part I proofs will be given of results which were announced in [13]. These
proofs are elementary — they generally require at most the triangle inequality or
Taylor’s theorem with derivative remainder. However, I supply complete details
since there may be some interest in the constants in the error bounds. See [7],
p. 118. It may be that quadratic spline interpolation is preferable to cubic spline
interpolation when C? or C? functions are considered and when error is measured
by the uniform norm.

In Part II I will discuss, following de Boor [3], the exponential growth of null
splines. However, these null splines vanish between knots rather than at the knots.
They seem to be connected with “midpoint” Euler-Frobenius polynomials. See [16],
Lecture 3, Sec. 4. Here I use only the quadratic null splines to provide a second
proof that quadratic spline interpolation is operator norm bounded with no knot
restrictions. Their properties (see also [3]) suggest another proof of Theorems 5.1
and 5.3 in Kammerer, Reddien, and Varga [9] concerning local error bounds for
interpolation to locally smooth functions. I give only the proof of Theorem 5.1.

Finally, in Part IIT I will define quadratic B-splines and provide a third proof
that the quadratic spline interpolation operators are uniformly bounded. A fourth
proof has been given by de Boor [2], Sec. 3.

In Part I the proofs are not very interesting. They usually involve the mean-
value theorem and the triangle inequality. I am sure that some of the arguments
may be tightened to produce smaller constants. The dependence on /4 can be made
“local”. See [9], Th. 4.3. In Part II the- result is not interesting, but (I think) the
technique is interesting, In future work I hope to use null-splines to produce a simpler
proof of de Boor’s result in [2] that cubic spline interpolation at successive three-
knot averages is operator norm bounded with no knot restrictions. The diagonal
dominance argument used in Part ITI cannot be used for higher degree splines.
In [2], de Boor has exploited total positivity to produce the cubic spline result, already
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mentioned. An extension of his lemma ([5], p. 457) may be needed before the
approach of [2] or of Part III can be used on splines of degree four or more.

1t should be noted that (d) below in the definition of quadratic spline inter-
polation differs from an approach sometimes used (and preferred, see [6]) for even-
degree spline interpolation wherein knots are placed midway between successive
pairs of interpolation nodes. My choice of (d) was suggested by Schoenberg’s use
([17], [14], [12]) of the nodes

Tiker = Qa1 +Xpeat oo +340)/k

in defining variation diminishing spline approximation of degree k. In this con-
nection, Theorem 1 below should be contrasted with a result of Zmatrakov [20].
Recently, de Boor [2] has proved that the cubic spline interpolation operators with
the nodes 7j,, are uniformly bounded. Again see [20] for a contrasting result when
the knots x; are used as nodes for cubic spline interpolation.

The assumption of periodicity, () in the definition of quadratic spline inter-
polation, can be replaced by other boundary conditions, e.g. s(0) = y(0) and s(1)
= y(1). When this is done, the assumption of periodicity on y may be relaxed.
In this case, it is convenient to think of s as a periodic quadratic spline having triple
knots (and, hence, one-sided continuity) at the integers. The only modification
necessary is that the consistency relations (1) and (2) do not hold for i = n.

DEFINITIONS AND PRELIMINARY RESULTS

Letd: 0 = xo < %; < ... < x, = 1bea (fixed) partition of [0, 1]. Set b; = x;—x;—;
and 7; = (X, +x;)/2 for i=1,...,n Set hy=h, and h,., = hy, Set a; =
= Ry /(Bi+ Py )and ¢; = 1—g;for i = 1, ..., n For any function g, set g; = g(x;)
for i= 0,1, ..., n For any n-vector (v;), let ||v;|| = max {[v,|: i = 1, ..., n}. For
any function g, let

lighl = 1lgllr ro,13 = sup {lg(x)|: 0 < x < 1}.

Let y € L, [0, 1], the space of bounded functions on [0, 1] with the above
norm. We shall usually assume that y(0) = y(1) and that y is extended periodically
with period 1. A function s = P,y is a periodic quadratic spline interpolant associated
with y and 4 if

(@) s(x) is a quadratic expression oh each (x;_,, x,);

(b) s € C'[0, 1], the space of differentiable functions;

©) 50) = s(1), s'(0) = 5'(1); and

@ s(z;) =y(r) for i=1,...,n

Thus, s interpolates y at the midpoints of the subintervals formed by 4, the
set of knots of s.

On (x;-y, x3),

SG) = [si (e xi-1)? — 811 (= %)21/ Q) + 5(z)) — Bu(si — 1~ 1) /8
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so that
50x) = s(r—) = s(z)+ Gsi+si_1) /8
and
(i) = s(riog+) = $(v))— Bsjy +5Dh/8.

Equating s(x;—) and s(x;+) as required by (b) yields
® CiSi-1+ 381+ 514y = 8I5(z14 1) — (T (it Pisy)
fori=1,..,n

Similarly, since on (x;_q, x;)

F5(x) = 4s(vs) (i~ ) (v— X 1)+ [51- 1 (61— ) — 300 — X = O] (g + 2~ 22),
we have

§'(xi—) = (31—1_4S(Tt)+35i)/hi

and

§'(t_g+) = (—3s_1 +as(z)—s:)
so that
2 a8i— 1+ 351+ 68141 = 4ais(v)+4eis(Ti1)

for i =1, ..., n follows from the relation s'(x;—) = s'(;+).

In view of (d), the right members of (1) and (2) are “known”. Either (1) or
(2) may be solved, since the coefficient matrices are diagonally dominant. Thus, the
questions of existence and uniqueness are settled.

Set e = y—s5 = (I—Py)y. Sice e; = y;~s; and ef = y;—s; (when yj exists),
the relations

Q) ae +3eteieiny = ayio+30t Vi —4ay(T) — 4y (riy 1)
and
@ e +3eitaeiss = ¢yio1 3yt @y —8D(Tin 1) — () (it By 1)

for i =1, ..., n follow readily from (1), (2), and (d).
The following preliminary bounds on sy, 5}, e;, ¢} are basic to Theorems 1-4:

® llsdl < 2l|p(e)ll;

© lstl] < Ay (vig0) =y ()t A DI

0] 2led] € llapioy 43yt eiyip 1 —day(r)—4ey(zig)il;
and :

® 2lleill < lleyi-1+3yi4apie s —8[p(vi4 ) —y(z )]/ (At hey DI .

The following derivation of (7) emphasizes the “local” character of our argument.
See Sharma and Meir [18] where the same approach was used to produce cubic
spline interpolation error bounds.

11 Banach Center t. IV
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For a fixed j,
3lejl —lleil] < 3lejl~max {lej_s], lej4a}
< 3legl—ajle-1l—cjlepi il < [3¢5+aje;- 1+ eyl
= [@;¥j—1+39;+ Y101 —4a5p(7) — 4¢;¥(7)4.1)]
< o1 +3pit epipr— 4y () —dey (T Il

Now, take the supremum to get (7).
A similar argument, using (2) instead of (3), produces

3lsyl—llsll < 14a5(r) +4e;5(Tp0 )| < Hay+eplls(wll = 4ly(w)ll

from which (5) follows.
We now give a second derivation of (7), using a well-known matrix bound:

47 < IDI/A~II=DA[) if |I-DAll < 1.

See Hall [8] for the use of this approach to produce cubic spline interpolation error

bounds.
Let 4 be the nx n coefficient matrix on the left of (3). Let k; denote the right
members of (3). Thus, (3) reads 4(e;) = (k;). Then

lledl = 114Gl = max, D" (A7), Ky | < max, 2 (4=, 1y
- J

< Ilkedlmax, Y [(4=2)y) = [l - [L4=]
7

< ikl 1D/~ II-DAl) < U/Dlk ] if D= (/3.
This result is equivalent to (7).

The relations (6) and (8) can be derived by either of the two approaches just
demonstrated.

PART X
L1. Statement of the main results
Recall that
@(y; 8) = sup {{p(x)~y(x"): 0 < X' ~x" < 8},

Since y is 1-periodic, we may restrict x’ and x'’ to the interval [— 8, 1]. Recall also
that

(1P4]] = sup {||P4yli: liyl| = 1}.

THEOREM 1. Let 4 be a partition of [0, 1], y be a bounded 1-periodic function,
and s = P_y be the periodic quadratic spline interpolant associated with yand A. Then
® lsdll < 24Pl llsll < 2090, (1Pall < 2
(10) Hledl < 20(y; b/2);
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and
1) llell <3w(y; h/2) where  h = ||

The constant 2 which appears in (9) cannot, in general, be decreased.
THEOREM 2. Let y and y' be continuous l-periodic functions. Then

(12 sl = lisil < 20071 el < 311
13 lledl < A/Dho(y's ) < ho (V'3 R[2),  llesl| < HIY'll;
14 el < 5/
as Heill < 30('; 4/2);
(16) lle'll < O/Dw('; 1/2);
and
an llell < (13/8)ha(y'; 1/2).
THEOREM 3. Let y, ', and y'' be continuous 1-periodic functions. Then
a8 llesll € A/ (y"; B);
19 lleill < (1/2)ho(y"; B);
(20) lle'll < ko (¥ B) < 2ho(y”; B/2), Il < 2A11Y"II;

@D llell < (NOFw("; B) < (/R 4/2), llell < (5/8)h21y"|;

and

(22) ") < A+h/h)a(y"; B)  for  xi; < x < x;.
THEOREM 4. Let y,y',y", and y'"' be continuous l-periodic functions. Then
23) _ llez || < (1/8)R%|1y""II;
(V2] Heill < (1/3)R2|]y"||;
2% lle'll < 124 R3{]y"'11;
@6 llell < @7/96)R*|1y™"|l;
and
@n le") < [+ BRIyl for  xy < x < x.

Except for (22) and (27) from Kammerer, Reddien, and Varga [9], which have
been added here for completeness, these results were announced in [13].

1.2. Proof of Theorem 1

Since ||y(z)ll < lIyll, the first relation in (9) follows from (5). From this relation
and convexity,

i1 OGe—x)—s:(x—x;_1)] < 2R4[yl] for x_y <x<x

so that, on [x;_,, xJ],
5@) = L1 (i 20) =510e— %] Oy + 21— 20 /3 +4p(z3) (ri— %) (x—xs_)/AF

11+
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is bounded by

Bl - (%o g + 20— 2] [ + 4| P11 Ger— %) (e —2x-1) B
which is maximized at x = x; with a maximum value of 2[{y[|. Thus, [[s]| < 2J|yl.
Recalling that s = P y and the definition of [|P (| completes the proof of (9).

To derive (10), we recall that a;+¢; = 1, a; > 0, ¢; > 0 and rewrite (7) as
28) 2llell < ]|Cx[yl+1—)’(Tt+1)]—30i[1’(7-’1+1)“Yz]'l”301[)’1“}’(71)]—al[)’(ﬂ)“‘)’l—x]”
which implies that

2lle| < llet+3ei+3ar+alio(y; b2) = 4o(y; h/2).

We use (10) to derive (11). Let x be such that [e(x)| = [le|]. Set ®= o(y; h/2).
Suppose without loss of generality that 7; < x < x; for some i. If s is monotone,
say, increasing, on (7;, x;), then

e(®) = y(@)—s(x) > ) —yE)l+ ) —sG)] = —0—20 = —3w
and

e(x) = y(x)-5(x) < D) —yE@I+D(E)—s@)] = yN)-y(=) <
so that |e(x)| < 3w. Similarly, if s is decreasing on (7, x;), then le(x)| < 3w. If 5 is
not monotone on (7, x;), the analysis is more difficult. Without loss of generality,
assume that y(z;) = s(7;) = 0 and that s;_, > 0. Then s is a parabola and 5'(x") = 0
for some x' in (73, x;). Now, properties of parabolas and (10) give that s(x) > s(x")
and
—35(x") < $(xi-1) < 20+y(xi-4) € 30.

Thus, —s(x") < . With this fact,

e(x) = y(x)-s5(x) < PE)-rN+ - < ototo =30

while, also,

e(x) > y(x)—max {s(z)), s(x)} = [P~ y(@)l+ ()~ max {y(z)), s(x)}]
= DE)—yel+ D) —max {y(v), s(x)}] 2 —0—20 = —3w.

Here, the last inequality follows from at least one of the two lines which precede it.
The proof of (11) is complete. :

To complete the proof of Theorem 1 we must show. that

sup {||P4|l: 4 a partition of [0, 1]} = 2.

Thus, for & > 0, we must show that there is a 4 and a y for which ||y|| = 1 while
||P4yl] > 2—&. We will exhibit such a y and 4.

‘We note that the approach used by Oskolkov in [15] can be paraphrased to
yield an alternate proof.

Let &> 0. Set m = max{2,4/e}. Set k equal to an integer greater than
logs(3m/2). Then

2—¢ < 2(m-1)/(m+1) * and 3m/2 < 3~

icm
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Set n=2k+1 and Iy = hyyy_; = M1 Q+2m+ ... +2m*14mb), for j =1, ...
..., k+1. Define A4 by setting x; = by + ... +h;fori =1, ...,n It is now claimed
that ||P4]| > 2—¢. To prove this we construct y with ||y|| = 1 and show that
2—& < Pay(xx) = s < ||Pgyll.

With 7; = (x;_;+2x:)/2 as usual, set p(7i1) = 0 and P(Tip 14) = = ¥(Thy1-p) =
(=1) forj=1, ...,k Complete the definition of ¥ in any convenient way subject
to the constraints [[y]| = 1 and y(0) = y(1). The relations (2) become, since sym-

metry gives §; = —Sy4q—; forj=0,1, ...,k
So = 0;
msj_y+30+m)s;+55., = (=1 J4n—1) for j=1,..,k-1; and
msg_1+ 2+ 3m)s, = 4m.
The general solution of the middle set of difference equations is
8 = R(m—1)/(m+ D] (— D+ B(—r)+C(-r)y for j=0,1,..,k

where ry > r, > 0 satisfy r2—3(1+m)r+m = 0. Imposing the conditions s, = 0
and msg_; + (24 3m)s, = 4m, as we must, yields
B+C = (—1)*"12(m—1)/(m+1)
and
B(=r)"(ry =D+ C(=r)(r—1) = 4.
These solve as
B = [4~r§2(m—1) (1—r))/(m+1]/(— )*D,
C = [-4—ri2(m—1)(r,— 1))+ D]/(-1)*D
where
D = ri(r —1)+ri(—ry).
Thus,
S = [20m—1)/(m+ D]+ [} —r§) ~2m*(m—1) (ry—r2)/(m+1)]/D
> [2(m—1)/(m+ )]+ [4¢% —r5) — 6m+1]/D
since D > 0 and r,—r, < 3(m+1). Since r, > 3m+2 and r, < 2, it follows that
rX—r% > (3m)* so that we have
& > [R(m—1)/(m+ D] +4m*(3*—3m/2)/D > 2(m—1)/(m+1) > 2—&
in view of our choice of k& and m.
The proof of Theorem 1 is complete.
The constants which appear in (10) and (1I) may not be the “best”. Simple

examples with #» = 3 can be used to establish that, in general, the constant in (10)
must be at least 5/3 and the constant in (11) must be at least 2.
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1.3. Proof of Theorem 2
Since 5' is a piecewise linear function with corners (x;, s;), we have ||s'|| = ||s]ll.
Now (6) and the mean-value theorem yield
15"l < A p(zre )=yt by Ol < 2111
Then,
el = [ly" =l < I II+1Is'l < 311

completing the proof of (12).

From (7) in the equivalent form given by (28) and the mean-value theorem,

2ledl < IBerhess [ @) =3y (us)l+ 33y (42) =y (o)l
= |Bah { Iy (s} = ¥ (a)]— 20" (a) = ¥ o)1+ [ () — »' )|

where X;_; <u; < T <Uy <X < Uz < Tpyy < Uy < Xy4q. We have used the
relation a;h; = c;hy.,. Of course, uy, u,, us, 4, depend on i, but we have sup-
pressed that dependence. Since 4a;h; = h hie/(QRhi+2h 1) < h/4, it follows that
2llesll < (h/4)- 4x(y'; ). The other relations in (13) follow from the facts w(g; 26) <

2w(g; 8) and o(g; 6) < 2|lgll.
From (12) and the relation

x

©9) e = {e@ar,
we have

leGl < bs—l - Il < 3lx—il- Y]l < (S/4)AIY
provided that [x— ;| < 5k/12. From (12) and the relation

x

e(x) = e;+ S e'(t)dt,

xt

(30)
we have

leGa)l < gl +x—xil - 1l < AlIYI+3x—xd - (Y]] < (/49|
provided that [x—x;| < h/12. Since we may always choose an i so that |x—x;|
or |x—1;| < 5hf12, the proof of (14) is complete.
To prove (15), we use (8) and the mean-value theorem. For each i, there is
2 u such that v; <u < 7, and
e¥i-1+ 3Vt @iy —8[0(zis )~ y (e} (i + By )
= CYims + Vi GV — 4 (W)
= iyt s~y @]+ 30—y @)— e[V @) —yi-il.

< B/12

Thus, from (8),

2lefll < ll@it+eol'; 34/2)+3w(y'; hj2)|
= o(/; 342 +30(/'; hj2) < 6w('; h[2).

icm
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To prove (16), let Ly denote the piecewise linear interpolant to y’. Then, for
each x,

'@l = ()=} < 1y ()~ (Ly") ()] +1(Ly) () —5"(x)|
< Y- (@) @IHILY =5l = [V )= Ly") I+ Ly = sill
= Y= @) @I +yi —sill < [V —Ty) G +3w('; h[2)
because of (15). Finally, Loginov [11] has shown that }jg—Lg|| < (3/2)w(g; 1/2)
whenever Lg is the piecewise linear interpolant to g having corners (x;, g;) so that
le'll < Gy A2)+3w(y'; B/2).
The proof of (17) is similar to the proof of (14). Either we have [x— 7|
< (13/36) 4 and (29) so that
le()| < lle'll < (13/360) - (9/2w(y'; hf2) = (13/8)ha(y'; h[2)
or we have |x—x;] < (5/36)h and (30) so that
leG < llegll+ x—x] - [le'll
< ho(y'; h/2)4 (5/36)h- 9/ (¥'; hI2) = (13/8)he(y’; 1/2).
The proof of Theorem 2 is complete.

fx—1i|*

L.4. Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 2 except that Taylor’s
theorem with derivative remainder is used instead of the mean-value theorem.
‘We now prove (18). For a given i

@GYi-g +3pitCiyivs—4a:y(Ti)—4¢:Y(Tiv 1)
= a;(yi—1—20(z)+y:)+ 2a; (3~ y(z1) )+ 2e: (i -y
+ei(yi— 2y (s )+ Yis1)

V' @4~ aih?y" o)A~ cihis ¥ (ua) A+ cihly . ¥ (us) 4
where x;_; < #y < X; < Uy < Xpqqand 73 < 4, < X; < Uz < Ty4y - Thus, from (7),
2Hlesll < llashf+cihfyqllo(”; B4 = b o0 DA < QoG5 h).

To prove (19) we refer to (8) and note that
ci¥i-1+3pit ayip s = 8 (vie )~y (=) i+ his )
= a;[Vi— 1y @Ol + 3yt alyi+ by ¥ @)~
— 8Dyt his 1 Yi/2+HE 1 ¥ Wa) /8~ yit-hiyif2— B
= e[y W)=y @l +arhiy [V () — 3" (us)]

where x;_; < Uy < X3 < 4y < Xppp and 7; < 4, < X; < #y < 7Ty4. Thus,

lethi+aihiy oG B) <

(T )+

= Ll(h

V()8 Gy + B )

ezl < hoo(y'; R).
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To prove (20) we let Ly’ be the piecewise linear interpolant to y'. For a given
x we select i so that [x—x;] < A/2. As in the proof of (16),

@] < Y@= @@+ 1yi—sll
= [¥'(x)— (L)) + et
= |x—xi| - [/ = LpY @l +lefll = [x—xil - [y @) —y" (w2)l +leill
< (B2)o()"; B+ B2 ("5 h)

since (' ~Ly")(x;) = 0 and (Ly')’ is piecewise constant.
The proof of (21) is similar to the proof of (14). With [x— 7| < (5/16)/ and (29)

le()| < [x—7l- |le'l]] < (5/10)F*w(y"; h).
With [x—x;| < (3/16)h and (30),
le@)] < llgli+1x—x] - [le']] < /82w (y"; B+ B/16) oy ; ).

The following proof of (22) comes from [9]. Since s”'(x) is constant on (x;—y, X),
u may be chosen in this interval so that

e'() =" (=¥ ()+y" ) ~5"()
=y"'(@)=y"W+e" W)
=y"()—y @+ lei—ei-1]/h.
Thus,
le" ()] < w(y"; B)+2llejll/ < 05 B+ (/Ao (35 B).
The proof of Theorem 3 is complete.

’ 1.5. Proof of Theorem 4
Taylor’s series gives
ayi-1+ 3yt iy —daiy(v) —dei y(vi44)
= a;lyi—hyi+hEyy (2= Ry (un) 6]+ 3yi+
Felyit b Vit Byl 12+ B Y (1) /6] —
—4ay[yi—hiyi/2+ Yy 8= R}y (ug) /48]
—dcilyithi 1 /2B D (84 BE 1" (u5) /48]
= @l 1y ()= 29" )I/12+ ¢ b3y [29" () — ¥ ()] 12
with oy < <X <uy <x4qand 7y <uy <% < uy < 74, Thus,! rom (7)
2lled) < llah? +eiall - Iy 114 < UHBY™ ||

so that (23) is proved.
Similarly,

eYi-1+ 3Vt @i — 81 (viea) — PO (it iy )
= alyi—hy! +hy" (uy)/2]4+ 3yi +

icm°®
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+as it YU R ()21 —
=8yt hus Y12+ B3 Y (8B 1y (ua) [ 48—
—pithiyif2—hEyi (B4R (u2) 48]/ (et Py 1)
= i3y () —y" W6+ ahi 13y () —y'" (3)]/6
so that (8) yields
2lleill < llesh +aht,qll- @Y™ < @3RI

Thus, (24) is proved.
If Ly is the piecewise linear interpolant to »' and if x;_; < x < x;, then
¥ () — (Ly)(x) = (x—x;-1)(xi—x)y""()/2 and, as in the proofs of (16) and (20),

le'GI < [y ()= (L)) +lleil] < (2 /8) 1y I+ (A/3) A2y 1]

which is (25).
With [x—7;] € (17/44)h and (29),

le@)] < [x—= - lle'll < (17/4D)R- (1120 R3|y"™|].
With [x—x;| < (5/44)h and (30),
le()| < llggll+x—xi| - lle'l] < /)Ry 1|+ (3/44) - (1129 R2||y""]}.

Thus, (26) is proved.
Concerning e’ we have, as in the proof of (22),

¢'(x) = ¥ () —y" )+ (ei—ei-)/h
= (x—u)y" () + (ei—ei- /M
where the second equation comes from the mean-value theorem. Thus,
le” GOl < Pe—uy] - |1y +2llejil /s
< (W @3 )yl
and the proof of Theorem 4 is complete.

PART I
1.1, Exponential growth of quadratic null splines

This section is based on Birkhoff and de Boor [1], see also de Boor [3], but adapted

to quadratic splines.
If C(x) is a quadratic such that C(#/2) = 0, then

C(x) = CO)(1 ~4x*/h?)+ €' (0)(x—2x>[h)
and
C'(x) = C(O)(-8x/B)+C'(O)(1 —’4x/h).

[Ea)= L 3lleol

Thus,
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[col Lo -3/lew)

A paraphrase of this reasoning yields:
LeMMA 1. Let C be a quadratic spline. If C(z;) = 0, then

[a]= =l 3]
cl™ T8/ 3¢y

)= 2llE]
ci_ ) T Ly -3lic]

As in Part I, C;'= C(xy), by = x;—x;1, etc.

If C is a nonperiodic quadratic spline with a doubly-infinite set of knots such
that C(z;) = 0 for all j, then we shall say that C is a quadratic null spline. Quadratic
null splines have an exponential growth property in the following sense:

LeMMA 2. Let C be a quadratic null spline. If i is such that C;C{ > 0, then

ICyl |1 o
[IC]I] >3 ’[IC”] Sor all j > 1i.

If i is such that C;C; < 0, then
[1C;l -[lCzl
? i-J H *
IC}I] 3 IC“] for all j < i.
Moreover, for all i, max {|C(x)|: x;—, < x € x;} = max {|Ci_,], |Ci|}.
Proof. If C;C’;> 0, then the first matrix equation in Lemma 1 gives

ICz+1I] _ [ 13Ci+h, Cil ] B [ 31Ci+Au44|Ci] ] S [3!C:!] 3 ICil
[Ciisl 8Cih 1 +3CH ] L@/ ICl+3161] 7 131ci] ™ L]

In addition, C;4; Ci, 4 > 0. Thus, the process may be repeated so that the first matrix
relation of Lemma 2 follows by mathematical induction. i

The second matrix relation follows in like manner. The last assertion of Lemma 2
follows from the geometry of parabolas.
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and

and

I1.2. The fundamental splines of interpolation
The set of functions {C': i = 1, ..., n} defined by
(i) C'is a periodic quadratic spline having knots in 4;
(i) C'(z)) = 0if j # i; and
(i) CHz) = 1
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are said to be fundamental quadratic splines. If y € L,[0, 1]and s = P,y is its periodic
quadratic spline interpolant, then

s = Zy(n)C‘.
=i

It is well-known that ||P4]| = max{>|C'(x)]: 0 < x < 1}.

In Theorem 1 it was shown that ||P4|| < 2. We shall use quadratic null splines
to prove the weaker assertion ||P,|| € 14. Our purpose in doing this is that it may
be easier to extend the null spline argument than to extend the argument in the
proof of Theorem 1.

‘We shall also use null splines to reprove one of the local error bound theorems
of [9].

I1.3. Operator norm bounds via null splines

Fori= 2,3, ..., n the fundamental spline C* coincides with a quadratic null spline
on [0, x;—;]. Fori= 1,2, ..., n—1, C* coincides with another null spline on [x;, 1].
By extending the knot sequence 4 periodically, we may combine these facts to state
that C? coincides with a quadratic null spline on [x;, X +1—1]. Then, Lemma 2 applies
on this interval so that we may compare Ci = C'(x) with Cf = C'(x;) or Cj_;
= C'(x;_y). The result is

LeMMA 3. If i < k < n, then, either |Cj| < 3*¥3~1-"|Ci_,| or |C}| < 3~¥Cl.
IF0 < k < i—1, then either |C| < 3*+17Y|CE_y] or |C}] < 37%"ICl.

Similar relations hold for the derivative of C%, but we shall not need them.

Now, [|P4]| = Z |C*(x*)| for some x* on [0, 1]. There is a k such that x;_,
< x* < x;. Then

IPAI < 1CG%)]+ > max{|Ch-al, ICH}
i#k

k-1
< ICH)|+ Y max {(3+1-FICE_ |, 3 HCH 4+
1

n
+ Y max{3E-Cl |, 3R Cl)
k+1
k=1

< CHEH|+ Y @+ 3+ B max (|G-l G} +
1

3 Z(3k+1—i+3i+1—"-")max{HC":_1H, I1GI}

k+1
< |CHe*) |+ [B3/2) + (3/2)+ (3/2)+ (3/2)]max {|| G I, ICI}
<2462 =14, ’

where the last line follows from a paraphrase of the proof of (9) in Theorem 1.
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A more careful argument, using (2) and the properties of the fundamental
splines, will produce a smaller number than 14, but I see no way to produce the
“best™ constant 2 of Theorem 1 above by using a null spline argument.

11.4. Local error bounds via null splines

In Kammerer, Reddien, and Varga [9], a matrix result of Kershaw [10] is exploited
to establish local rates of convergence for quadratic spline interpolation to a bounded
function y which is only locally smooth. We shall prove a theorem similar to [9],
Th. 5.1, using null splines. Using cubic null splines, de Boor [3] has proved similar
results for cubic spline interpolation.

We note here that [9], Relation (5.2) seems to be incorrectly stated since it is
not sufficient to deduce the lines which follow [9], Relation (5.12).

Let I* = [a*, b¥] where 0 < a* < b* < 1. Let a partition 4 of [0, 1] be given.
Let y and z be bounded functions satisfying

(i) y € C*[a*, b*] for some fixed k = 0, 1,2, or 3;

(ii) z=y on I*;

(iii) ze C*[0, 1]; and

i) 0(E®;8) = w*(¥®; 8) if k <3 o 120,17 = YPllzeoges, by i k= 3.

Here, w*(g™; §) is the modulus of continuity of g™, the k-derivative of g,
on the interval I*.

Following [9], we replace the periodicity condition (¢) in the definition of
quadratic spline interpolation with the interpolatory condition

(©) s(0) = y(0) and 5(1) = ¥(1)
and let s = P,y be the corresponding quadratic spline interpolant to y.

Let p and g be integers such that 7, < ¢* < 7,,, and 7,_; < b* < 7,. For
a given x in I*, let r = r(x) be an integer such that x,_, < x < x,

THEOREM 5. Let y and z satisfy (i)-(iv). Let x € I* and let p, q, r be as above.
Let s = P,y be the quadratic spline interpolant to y based on (c)'. Then

(0= Ps))X)| < 3H*(®; Bj2)+3|lz—y|| - (37" +3-9)
ifk=0,1, or 2; and
[y=Pan) < (AT/9) ][5 lioogas, poy+ 3|1z~ p|[ - (37~"+3~9)

ifk=3.

Proof. Let , denote summation over {i: 7, ¢ I*}. Using the fundamental
splines above, as modified for (c)', we have
ntl

leG)l = |y 2w

= |- Y2 o+ Y ey —s( i)
< llz=Pazll 412311 Y €'
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n+1

< llz= Pazll+llz—l|-max {|C-4 1, |G} (23‘+1—'+ 23'“ ).

The last inequality comes from Lemma 3 of the preceding section as modified to
correspond to (c)’. From (9) in Theorem 1 above
le@)] < |lz—Pyzll+1lz—pll 2 3/2) B*"+379
= ||lz=Paz||+3[lz=yI| - 3*"+3"79).

Now, the versions of (11), (17), (21), and (26) above corresponding to (¢)’ give
bounds on ||z—P4z||. As noted in the introduction, the constants are the same.
With (iv) we have the result stated in the theorem.

With a more careful argument, the factor 3||z— y|| may be exchanged for 2||z— il
‘We will not give this argument.

PART I

An important set of periodic quadratic splines are the periodic B-splines {N: j
=1, ,n} These are the same B-splines which appear throughout the spline
literature extended periodically. They have the “partition-of-unity” property:

M@ =Y N@=1 for 0<x<L
For our purposes, it is convenient to define them as
N = (U4 Chif (it By )+ (LA C A= hug o [ (it oy )= Basa [ (g Rl +
+ (/A CH2hy o [(Bry s +iva),

fori=1,2, ...,n Of course, the C’ are the periodic fundamental quadratic splines
and we have 1dent1ﬁed Ct = C*1, C2 = C™2, hy = hyyy, and by = hyys.

We shall use the B-splines to provide another proof that ||P4ll is bounded.
See also de Boor [2].

Let A = [ay;] be the n x n matrix defined by a;; = N Hzjpr)- Let B =

Now,

LYEPNCIEDY \Z BN ()| < Z (2 1oyl )
]

< max,Z |by| = {IBl|;  (by definition of matrix norm)

)= 47"

< [ID)ly /(= {1I-DAll,)

provided that D is chosen so that [[I—DAl|, < L.
The choice D = diag {1/a;} gives [|D}}; = 1/min {ay;} < 2 and
||[I—DA|[; = max {(li,i+1/aii+ai+2,i+1/ai+2.i+2}'

Without loss of generality, we may assume this maximum is attained for { =1
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so that
|{—DAlly = ar2/a11+as:/a33

[hs/(hz+ b))/ [4~hy/(hy + ho) = ha [ (ha + By)l +
+ [h3/ (ha+h)l/ [4~hy[(ha+he)~ ha[(he+hs)]
< [hs/(hy+h3))/ 13— hy /(R + Ba)]+

+ [ha/ (s + ha))/ 3~ ha /(s + 1))
= hs/(2h, +3h3)+ha[(3hs+ 2hs)
< 2/3.

Thus, we have shown that ||P4|| < 2/(1—-2/3) = 6.

This result should be contrasted with Theorem 1 above.

As we observed in the Introduction, de Boor [2] has exploited total positivity
to prove a similar cubic spline result.

i
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