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Introduction

Let C stand for the space of all real-valued continuous functions f on [0, 1}, with
the usual Chebyshev norm ||f]| = {max|f(x)|: x € [0, 1]}. Given an arbitrary
partition 7,: 0 = X < X3 < ... < Xp < Xny1 = 1 of [0, 1] consider the subspace
S(x,) of C, consisting of polygonals with the knots at the points of m,, linear in each
[x;, %44 (G=0,...,n). Fora function f in C, define P(7,, ) as the best S(w.)-
approximant to f in the sense of L,-distance on [0, 1], i.e.,
P(ri, £) € S(ty), ||~ P(@ns Pl = min{lf~gll2: g€ S(mn)}.
Tn this definition we used the conventional notation || - [l for the norm in L,, in-
duced by the usual scalar product
1

@) =\ pp@dx (@, peld; Il = @, @'
0

It is routine to call operators like P orthogonal projections. Further, define the Cheby-
shev norm of the orthogonal projection P(rm,) as follows:

|PGn)]| = sup {||P(en, NII: [1F11 < 1}
The quantity on the left depends on the partition 7. under consideration, i.e., it is
a function of the distribution of knots {x;}. It was shown by Z. Ciesielski [3] that,
in fact,
M (1Pl < 3,
whatever partition 7, one might take.

The aim of this paper is to show that the value 3 of the constant on the right~
hand side of (1) is best possible for the class of all partitions 7, and all », and thus
to give an affirmative answer to a question raised in Ciesielski [4].

The lucky fact (1) and other advanced properties of orthogonal projections
onto subspaces S(,) and also properties of higher order splines have recently found
some interesting applications to various problems of approximation theory and
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functional analysis (cf. [2], [3], [5], [6], [8]). Here we mention only that uniform
boundedness of the norms ||P(w,)|| implies instantly that Franklin orthonormal
system (see [7], [3]) forms a basis in the space C.

Exact values of the least upper bounds of the norms ||P(z,)|| for a special class
of dyadic partitions of [0, 1], generating Franklin system, and also, for the class
of uniform partitions, were computed by Ciesielski (see [4]). It turned out that, for
the first of the classes mentioned above, this exact value is equal to 2+(2—)/ 3)s,
while for the second it is just 2.

Here we show that the value 3 of the constant in (1) cannot be decreased. It
may also be seen from what follows that the worst partition, i.e., partition which
serves to prove that 3 is best possible, is one containing a point of one-sided accumu-
lation of the knots.

In Section 1 below, we carry out the proof of Ciesielski result (1). This section
does not contain anything new and might be omitted; we have inserted it into this
paper for completeness sake only. Section 2 deals with the proof of exactness of (1).

The author uses this occasion to express his sincere gratitude to Professor
Z. Ciesielski for many useful advise and also to Miss J. S. Marsden for checking
the language of the manuscript.

Section 1

THEOREM 1 (Z. Ciesielski [3]). For an arbitrary n > 0 and partition =, the follo-
wing inequality holds
@ [1PGa)l] < 3.

Proof. For a given partititon s,, denote by Li(x) (j=0,1,...,n+1) the
polygonal from S(z,) defined by the conditions:

Lix)=0 (+#)); Lfx)=1.

It is plain that an arbitrary polygonal L(x) from S(z,) may be uniquely written in
the form

ntl

Lx) = gfjlq(x),

whe.re .Ej = Llx;) (j=0,1,...,n+1). Therefore, it follows that the orthogonal
projection P(w,, f)(x) may be represented as

nt1
P(Ut,,, f)(x) = Z EiLf(x),
=0
where the coefficients {&;} satisfy the system of linear equations

n+l

® ZE;(L;,Le) =(fL) G=0,1,..,n+1).
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As the functions L; are linearly independent, the Gramm matrix (L;, L;) of this
system is non-degenerate by a well-known theorem from linear algebra, and thus (3)
has a unique solution.

Let us estimate the value of

@ 1€]] = max {|&]: i = 0,1, ..., n+1}.
It is clear that
(5) ”P(”nsf)” = HE”;

and thus, if we get an estimate for ||&|| from above, this gives us an estimate for
the norm of orthogonal projection P. To fulfill it, denote by k a number #, for which
the max in (4) is attained, and put & = sign&;. We now use the kth equation only
from the system (3) and obtain

k-1

I8 (Les L)+ e D 6Ly, L+
=0

n+1

2 Ej(LjaLk)) = &(f, Ls).

J=k+1

0]

Furthermore, using (4) and the fact ‘that all the functions L; are nonnegative, we
get from (5) and (6) that

™

But it is obvious that the functions L; form a partition of unity, i.e.,

||P(n,,f)n((Lk,Lk)—Zk(Lj,Lk)) < If11 e D).
J#

n+1

SNL@=1 e,

Jj=0
and so it follows from (7) that for an arbitrary f e C,

(Lb 1)
P (70, S T .
® PG, NI < g r =gy 1
An easy computation of integrals shows that in our case,
o=ttt gy het gy
8, ) O [
Lo, 1) = TOQ (Lo, Lo) = TOS Lnsr, ) = T; Las1s Loy = 3

where we used the notation &, for xz.;—x (k = 0, 1, ..., n). Thus, the first factor
on the right-hand side of (8) equals 3 for all &, and we are done. -

Section 2

THEOREM 2. For n = 0, 1, ... the following inequalities hold

4

) sup| [P > 3= 555
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the sup being taken over all the partitions m,: 0 = xo < x; <
of [0, 1] with n distinct knots.
Proof. For a fixed partition o7, define

X = X(m,) = sup {£: (3) holds, ||/(] < 1}.

The quantity X is a function of the partition m,, that is, a function of n+1

e <Xy < Hpyy =1

10)

variables 8o, 8y, ..., On, Where 8; = Xy, —x; >0 (i =0,...,n), and 3. §, = 1,
I 0

This last restriction may be ignored in what follows, since all our speculations might
be done for an arbitrary bounded segment [a, b], not necessarily [0, 1].

LeMMA. For any fixed positive numbers 8y, 8,, ..., Oy,
an limX(8o, 0, -5 8n) = 3+3 X(dy, 82, ..., 81).
8o~+0
Tterated application of (11) shows that
lim lim ... imX(8, &5, ..., ) = 3— —kOn)
On-120 Gng b0 o0 2

and it can easily be checked, that X(d,) = X(m,) = 5/3. Thus taking into account
@), (5), and also (10), we deduce from (11) estimates (9), and so to prove Theorem 2
it is sufficient to establish the validity of Lemma.

For the purpose of the latter, an explicite form of Gramm matrix G = {(L;, L))},,;
is needed (see [3]). Calculation of integrals, involved in its definition, shows that
this form is as follows:

[ 6 7
7;' “Ed 0 0 0-.-0 0 0 0
8 Bo+0; &

T 3 & 00..0 0 0 0

&y 01+8;, 6,

12) 0 T 00 0 0o o

Bpi Onoi+0, &

0 0 0 00 --- n-1 On-1T0n On

0 =5 3

0 o0 0 00 -0 LI

L 0 6 E

Denote by D(o, dy, ..., 8,) the determinant of this matrix, and let Ai(86, 814 <vey Bn)
stand for the partial determinant corresponding to the ith entry of the Oth column
of D (i=0,...,,n+1). For abbreviation sake, we shall use notation 6,n+1)

for (30, 91, ..., 8,) and (8,1) for (dy, 6, ..., 8,). Next we express D(3, n-+1) and
A4(8, n+1) through D(3, n) and A(4, n):

40(8, n+1) = D(3, n)+ igiAo(a,n);
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D@, n+1) = 22 Ao(d, nt =22 20 45, )

o
6
13

= %’-(D(é, n)+ —%_O—Ao(é, n));

i 1(8,n41) = %Ai(é, n (G=0,1,..,n.

These formulas imply in particular, that all the D and 4 are positive. Furthermore,
we get (see (3))

n41 1 n41
1 1 :
bt Z (1A L) = fgf(x)(; (14, L),
and thus
1
a9 X, mt 1) = sup bo: 1711 < 1} = | K@,
[
where
n+l
K0 = Y (A Li().
=0

Using the previous remark, we see that the polygonal K(x) has the following pro-
perties, usefull for computation of the integral in (14):

Xilipr+ X1 s
digy+4;

(i=0,1,...,n+1).

K(y;) =0, where y;= € (x;, Xig1)s

|K(x))| = 4,
Therefore, we get from (14) that

as5)  X(,n+1) = 2D(61n+1)26i
’ i=0

(cf. [4]). If we insert in (15), instead of D(6, n+1) and 4(8, n+1), their representa-
tions given by (13), we obtain

3 D2(8, n)+ 0(do)
2[D(8, 1)+ 0(30)] D(8, m+ 0(do)

[4:(8, n+1)*+[4:14(3, n+ DI
A8, n+1)+4;, (8, n+1)

X(8,n+1) =

1 1

n-1
[, (8, W1*+ 14:(8, m]?
+ 3 300, n)+ O] ; Bis1

4@, m+4i(8,m)

the factors in O depending on 8y, s, ..., 8,. The first term on the right in this esti-
mate tends to 3/2 as 8, — 0, and the second one to (1/2)X(8, n), according to (15).
This proves (11) and Theorem 2 with it.
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Remarks. 1. Let n > 0 be fixed and let
X0 = sup {&: #n, [|F1] < 1, & satisfies 3}
Then arguments analogous to just used above show that
X, > 3— 2 mestin=h,

¢ being an absolute positive constant.

2. Let C stand for the space of all real-valued continuous functions on the real
line, periodic W1th period 1, with usual Chebyshev norm, and let S(vt,,) denote the
subspace of ¢, containing all 1-periodic polygonals with the knots at the points,
which coincide mod 1 with some x; from the system

Tt 0K Xo < Xy < v <Xy < 1.

Denote by B(z,) the orthogonal projection onto §(ﬂn)- For convenience sake, we
take x, = 0 and denote xo+1 = 1 by Xp41.
An arbitrary polygonal L € S(n,,) may be uniquely written in the form

L(x) = Zs,-L,-(x),
J=0
where L; € S’(az,.), Ly(x) = 0if i # jand L(x)) = 1 (j = 0, ..., n). In this periodic
case, the order of system (3) is decreased by 1, and the corresponding Gramm matrix
of this system is now (2 1) x (n+1)-matrix, which differs in its shape from (n+2) x
X (n+2)-matrix in (12) by Oth and nth rows only. These last mentioned are now
correspondingly

So+0n o Sy
_—3_‘—' ? 0 CERY 0 0 "'g‘
and
6:1 6n-—1 6n—1+6,,
3 00..0 e~ 3

Thus, if we take 6, — 0, while do, d,, ..., 6,_, are fixed and positive, we return
instantly to the non-periodic case, with the distances 8o, 8y, ..., 8,3 between the
n+1 consecutive knots. After it, Theorem 2 may be applied and we arrive at the
following statement.

THEOREM 3. For n = 0, 1, ... the following inequalities hold

8
32"
the sup being taken over all the partitions 7, of the real axis which contain exactly
n++1 points; pairwise distinct mod1.
This theorem shows in particular, that the value 3 is exact also in the case of
orthogonal projections onto subspaces of periodic polygonals.

sup||Bm,)li > 3—-
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