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1. Introduction

N. N. Luzin’s theorem (see [2], and also [4]) asserts that an arbitrary measurable
function which is finite almost everywhere, may be considered as a continuous
function, if some set of points is ignored, the Lebesgue measure of which may be
made arbitrarily small. More exactly, for an arbitrary function f(x), measurable
and finite a.e. on [0, 1], and for an arbitrary number ¢ > 0, there exist a perfect
set and a continuous function g(x) = g, ¢(x) (x € [0, 1]) such that

(03} measF > 1—& and g(x) =f(x) for xeF.

Although it is far from the contents of this paper, a very deep result directed
to the further investigations of properties possessed by functions g from Luzin’s
C-property (1), may be noticed here. D. E. Menshov [3] proved (in the case of
periodic functions f) that the set F and the function g in (1) may be chosen in such
a way that the trigonometric Fourier series of g converges uniformly.

The aim of this paper is to get estimates of the uniform modulus of continuity
of function g in (1) under the assumption that the original function f is not only
measurable and finite a.e. on [0, 1] (as required by Luzin’s theorem), but does also
belong to the space L? [0, 1], for some p > 1. These “quantitative estimates of
C-property” will then be expressed by means of LP-modulus of continuity of the
function f,

Some particular consequences from the observations made below, sound as
follows.

Let 1 < p < o, and assume that f(x) e Lip(a, p)*, where 0 < a < 1. Then,
Jor each & > 0 and each n > 0, there exist a set F=F,, ; with measF > l—¢
and a continuous function g(x) = gy, ;(x) such that

g(x)=fx) (xeF)

* More careful definitions will be found in § 2 below.
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and, for the uniform modulus of continuity of g
©ulg, 8) = sup {|gC)—g )l Ix—y < 6},

the following estimate holds
@) 08, 8) = 0f*(log (1/8))*+7P) (8 - 0).

On the other hand, it will be shown that for no values of p, 1 € p < o0, and
o, 0 < o < 1, the value y = 0 in (2) is permitted, In particular, logarithmic factors
which tend to + o0 as § — 0, do exist, by necessity, at 6* in the right-hand side of
(2), at least for some functions from the classes Lip («, p).

Furthermore, in the limiting case o = 1 a more precise estimate of w.(g, )
than (2), may be easily obtained:
(©) wu(g, 8) = 0(8) (6~0),
the factor in O depending on &. This estimate is a consequence of the embedding
theorem due to G. H. Hardy and J. E. Littewood [1], (see also [7]), according to
which the condition feLip(1, 1) implies that f(x) coincides, for almost all x, with
some function f;(x) of bounded variation over [0, 1] and, in particular, with £,
differentiable a.e.

A comparison of this remark with (2) shows that the scale of Lip («, p)-classes
for 0 < o < 1 is too rough to provide a smooth pastening to the case of Lip(1, p)-
class, and that some more accurate classification of moduli of continuity is needed.
For purposes of the latter, a function Q2(h) is introduced in § 2, which controlls the
contemporary behaviour of w,(f, 8) and w,(f, 8)/4.

In § 3 the proof of the estimate from above (Theorem 1 of § 2) is carried out,
This proof uses approximation properties of V. A. Steklov averages

)
@ st =5 | fernar
-52

in L,-norm, and also Hardy-Littlewood maximal theorems (see [7], p. 32).

In § 4 Theorem 2 (see § 2) is proved, which shows the sharpness of Theorem 1.

Acknowledgments. The author is indebted to Prof. S. B. Stechkin for valuable
discussions of the results. of this paper. The author expresses his sincere gratitude
to Prof. P. L. Ulianov, who has driven attention to the questions considered here,
and also kindly discussed the results.

2. Notation and results

Without any loss of generality we shall assume in what follows that all the functions
are periodic with period 1. Furthermore, let p > 1 and let || f|! » denote the L,-norm
of a function f from L,, i.e., .

1
171 = (§ 1 0reax)"™
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and denote by w,(f, 8) the L,-modulus of continuity of f(x):

@,(fs 8) = sup {|l FGI—fGe+h)ll,: 0 < b < 6.
Denote by Hp,,, the class of functions f; defined as follows:

H, o= {feL, w,(f, )< w(@),0<d< i},
where () is an arbitrary function of “continuous modulus of continuity” type
(see [S]. In particular, if w(d) = 8% where 0 < a < 1, we get the Lip(x, p)-class.

As it was already mentioned above, we are going to obtain sharp estimates for

(g, ) in the classes H,, ,, not equivalent to the class Lip(1, p), that is, in the
classes defined by moduli of continuity w(8), for which the following condition
holds:
) -‘fi@ +oo (8~ 0).
To fulfil it, a definition of the function £2(8) controlling w(8) and w(d)/5 is needed,
which is done in (8) and (11) below. First of all choose, using (5), some sequence
{8k}.0 of positive numbers d-, d | 0 (k — o), with the property

© L@ < Zm (“’("")a w(a,,)) co(d 0<3<3)
k=0

where ¢ is an absolute positive constant > 1. Formally, the definition of {d;}i=o
is made as follows: let

0 O =g 0<<D
and let
1 A (@@ o*9)) _ 1 _
® b= 6,,+1=m1n{6. max(m,m)—)— 4} (k=0,1,..).

Using (5), according to which w*(8) — 0 (8 — 0), and the inequality
® w*(0) € 20*(m) O<d<n<i)

which is a consequence from subadditivity of moduli of continuity, we infer that
the sequence {6;} tends to 0 monotonuously as k — co, and moreover, that

(10 Seir <30 (k=0,1,..).
Define

an RO =24 (B1<8< 8, k=0,1,.); RO =0
(see also [6]). It may easily be checked that

(12) IO max{;u—g%, 53(%)} ©0< 5<%

and that (6) holds, with ¢ = 8.
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THEOREM 1. Let p > 1, and let w(3) = w,(f, ) be the Lymodulus of continuity
of a function f € L,. Suppose that
“’T‘s) >+ (8- 0)

and that Q(0) is defined by (8) and (11). Then, with an arbitrary function y(u), non-
increasing and positive for u > 0, which satisfies the condition

1

a3 {

[

du
up(w)

< o,

the following estimate holds

a4 [f)—fO)] < (C)+CH))eo(lx—pDyp P (Q(x~ D),
where the fimction C(x) = Cy,,(x) is nonnegative, finite a.e. and upper semicontinuous.
Moreover, if p > 1, then C(x) € Ly, and if p = 1, then
meas{x: xe [0,1], C(x) > z} < ¢/z (z > 0),
where ¢ is a positive constant, ¢ = Cyn

COROLLARY 1. For each & > 0 and each 7 > O there exist a set F = F, 5 and
a continuous function g(x) = g, ,. /() such that Fn[0, 1] is closed,

(15) gx) =f(x) (xeF), measFn[0,1]> l—e,

and that the uniform modulus of continuity of g satisfies the condition
_ @) o@

(16) wy(g, 8) = O[w(é)log‘“’”/"mm( 2(3) o) )],

(6> 0; () = w,(f, 8)).
Proof. To deduce this statement from Theorem 1, let v@) = (log(efu))*+7/
(0 < < 1). Then, by (11),

(O (D) = w(@)(e + e, Rt
Crs1 <0< 8, k=0,1,...; ¢, = log(e/2), ¢, = logd)
and thus, taking (8) into account, we see that
an oMY P(2(1) < @)y (2(6) O<y<d<D)
with ¢, independent from 4.
‘ ltlotice that (13) holds for the function y. Let z > 0 and let G, denote the set
of points x, where C(x) > z, C(x) being the factor from the right-hand side of (14).

By Theorem 1, G, is an open set, meas G, [0, 1] + 0 (z — o) and thus, for some
z = z(g) large enough,

measG,N[0, 1] < e.

icm°

Let Fbe the complement of G,, and let (a;, b;) be the sequence of consistuent inter-
vals of G,. Define g(x) as follows:

fx)  (xeF),

(18) g(x) = { linear function in each (a;, b;) with g(a;)
= flar), gb:) = fB3).

It is obvious that (15) holds for g(x), and thus we see from (12) that, to prove (16),
it would suffice to verify that
(19) 0o(g, 8) < czo(B)p'P(R()) (O <d<D
with some ¢;, independent from 4. Define

E1(x) =min{&: EeF, & > x},

&, (x) = max {&: £eF, £ < x}.
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Then,

@0) 18 —g0)l < |g)—g(€: ()| +](E:()|—g(E20))i +[e(6200)—80)I-
Suppose that 0 < y—x < 6. There are 4 possibilities for x and y:

() xeF,yeF; () xeF,yé¢F, () x¢F,yeF;, (@) x¢F, y¢F.
In case (1) we get the estimate

@1 2 —g0) < & z0(O)p*#(2(D)),

with ¢ = 2c,, ¢, being the same as in (17), directly from (18), (17) and the deﬁnitif)n
of F. Now consider case (4) only, since the remaining two cases may be treated quite
analogously. By (18) and (14),

@ le0-2E0)] = 5 A2 o) -2 0)

51 (X)~x _
= -5 VE@)-EM)

<2z E%Cg":)%)-m(sl(x)—zsz(x))wl/ﬂ(sz(&sl(x)— &),
and since £,(x) < x < & (x) < &) < y < & (), we see from (22), (9), and (17)
that the first term on the right-hand in (20) does not exceed

de,0(8) ' (2())-
By the same reason, this estimate is also valid for the last term on the right-hand

in (20), while for the second term (21) may be already applied. Thus, by addition, (21)
follows with ¢; = 10¢,. This completes the proof of (19), and of Corollary 1, too.

THEOREM 2. Suppose that p > 1, and let »(8) be a modulus of continuity with

3) Egﬂ_»+oo (6 - 0).
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Let 2(8) be defined by (8) and (11), and suppose that for a function (), which is
positive and non-increasing for u > 0, the following condition holds
1

du
(24) § D = + 0.

Then there exists a function f in the class Hy ,, such that for an arbitrary measurable
set F the relation

©5) | f0e) —f (o)

Tim
XX, xz—'x o(|x;—x,]) V’llp(g(txl “le))

%1,%26F

= 400

holds at arbitrary point x which is a point of density for the set F.

COROLLARY 2. If 1 < p < oo and if a modulus of continuity w(0) satisfies (23),
then there exists a function f(x) in the class H, , such that, if some continuous function
g(x) coincides with f(x) on some set of positive measure, then

= 0u(8, 8)
620 wp(f ? 6)
COROLLARY 3. If IS p<ow and 0 < a <1, then there exists a function f(x)
in the class Lip(a, p) such that, if some continuous function g(x) coincides with f(x)
on some set of positive measure, then
iy @8, &)
a0 0%logl®(1/8) —
Corollary 1 shows that, in general, for no class H, ,, (1 < p < o), except for
the class Lip(1, p), the estimate

0.(g, ) = 0(w,(f, 9))
is valid for the uniform modulus of continuity of the function g, which provides
Luzin’s C-property.
Corollaries 1 and 3 imply in particular the statements formulated in the intro-
duction for the classes Lip(«, p).

= +00.

= +o00.

3. Proof of Theorem 1

Let M(g, x) stand for the Hardy-Littlewood maximal function of some g € L[0, 1],
that is,

M(g,x) = sup

S le(®)lar,

the sup being taken over all the interva.ls, containing x (see [7]).

Theorem 1 will be deduced from the following statement.

LeMMA. Suppose that (5) holds for w(8) = w,(f, 8) and that the sequence {8)%-0
is defined by (8). There exists a sequence of absolutely continuous functions {f,(¥)}2=0

meI

icm°®
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such that for an arbitrary numerical sequence {ay}3 o, ax > 0, for which

0

@8) D<o,

k=0
both the functions
M(f—fi, X)
B(x) = By(a,f, x su
1( ) 1( f ) p w(6k+1)
and
ML, 9
() *
are finite a.e. Moreover,if p > 1, then By, By € L,, and if p = 1, then the weak type
estimate holds for B; and B,:

B,(x) = BZ(a;fs x) = sup
k=0

sup{zmeas {x: x & [0, 1]: Bi(x)>z}:z>0}<¢

ag,

s

sup{zmeas{x: x & [0, 1], B,(x) > z}: z > 0} < cZak.
k=0
To prove this statement, notice that by (8) at least one of the following two
possibilities occurs for each k¥ > 0
Opr1 146

@) M ol = gold) o @ s = ot

If for some k& > 0 we have (1), then let
Sfix) = Sa(f, %)

where S5(f, x) is Steklov average (4). For all extra values of k, let

fiex) = S5k+1(f! x).

If we apply the following well-known L,-estimates:

G0 1= Ss(Nllp < wp(f; 6),  ISHNII < &(fTél
(see [7], p. 117), we see from (29) that
¢Dh 1Al < 40 (Besn); 1Al < 45"%’2 *k=0,1,..)

To get the assertions of the Lemma, it is sufficient now to apply the Hardy-Litlle-
wood maximal theorems (see [7], p. 32) according to which

(32 <6 (>)

g
HM Tell,
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and

33 sup{zmeas{x: x [0, 1], M(—g~, x) > z}: z> 0} <c,
z>0 ”gHI

where ¢, depends on p only, and ¢ is an absolute positive constant. If p > 1, we write
1 0 1

SBf(x)dx <y agsj-‘l—'i(”—”ﬁ"—") &,
0

o = @ (0y41)

and thus, by (31) and (32),

34 1Bullp < 4o D at) "

=0
If p = 1, then an application of (33), (31) and the trivial inequality
meas {x: x €[0, 1], B, (x) > z}
o0
M(f—f;‘s x) }
< measyx: x € [0, 1], ————>a, > z
% { 0.1 =G *

shows the validity of the Lemma for B, . Estimates for B, are obtained in a quite
analogous manner.
Now we complete the proof of Theorem 1. Let

1

It follows from (13) that (28) holds for @;’s chosen. Furthermore, let x, y be fixed
and suppose that

(35) Oy < [Xx—Y[ < &.
‘Write

(k=0,1,..).

@)= < 1@ =/ +AE AN+ AG) -0,
and apply Lemma to estimate the right-hand side. We get

)10 < | B+ B0V s+ 5o 28 | pie 43,

for all x, y with (35). Since k is arbitrary in (35), (14) follows, and Theorem 1 is
proved.

4. Proof of Theorem 2

It is obvious that (25) will be proved if we construct such a function f, for which
the value of upper limit in (25) is positive. Furthermore, we may assume that
e

(36) (&) > log 7

0<£<2).

icm°
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Let N denote the set of nonnegative integers, and let
( @ "
G = |2 =]
p(2-477)
rn=min{r eN: 277 < &},
s =max{seN: 2~ < af} (keN)
where {dx} is defined by (8). Then (24) implies that

€Y

©

(38) ZskZ-’k = 0.

=0
In fact, if we observe (10), we see that r, > & (k € N), and so, by (37),

o0 o0 o
2&2-"‘ P Z (Sk+1)2_”"—2 > Z !P—(;p%)irr)— -2 = 0.
k=0 k=0 k=0
Furthermore, let
(39) K= {keN: a? < k?}.

Then, according to the definition of ay, i, and s,

Y s2n<) ap< il/k2 <
k=1

Frye kex
and thus, by (38),

(40) Z $p27™ = 00,
kek

Notice that it follows from (36) that the assumption

@1 PSR
ky<k<ks

implies that if k; > ko, where k, is sufficiently large, then
“42 ks > 2k,.

Now we construct the function, for which the assertions of Theorem 2 are valid.
In what follows we consider the points x, and the sets of these points, which coincide
mod 1, as identical. All the functions will have period 1.

‘Write
“43) Sp={x:x=05-2"%0<s< &%}, L=I[0,52"")
and define the polygonal fi(x) as follows:

[2’*a;‘w(6k)dist(x, Sy, if xel;

) A6 =1, £ xglk
It is obvious that f; is absolutely continuous,
@5 S =0 (x¢h); 1AM <Igto@) ek,

13 Banach Center t. IV
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and, if we ignore the set S,

(46) i) =0 (x¢l); () = 2%ag w(d)

Estimates (45) and (46) (see also (37)) imply in particular that

wulfer §) < 2a,:1min( "’g‘s“) 6,(0(5,‘)).
k

Furthermore, compute the L,-modulus of continuity of f;. Since

(x EI]‘).

“n

@p(fr> 6) < 0o(f, 6) (2meas (supp /i [0, 1)) = w,(f, 6) (2s,2-m)17,
we obtain from (47) and (37)
) 0,(fe, 8) < 4mi (“’(5") s, (ak))

Define the numerical sequence {ax}xx and the function f(x) as follows:

f0) =5 file—am).

kek
Using (48) and the estimate on the right-hand of (6) (with ¢ = 8), we see that

wnlf, ) < 322%01, 5 < SZ (% *)aa»(ao) < ()

(49 = 52-7,

leK, i<k

©O<s<y,
and thus fe H, .
Let /e K;
60  GE=% Y fh-m), H@ =% > fi—m);
keK,k<l kek, k>1

Ji= [, +527] = [o, ag4),

&)

Jig = [a:+ Lo 0+ q'zH 2—"] (g=0,1,...,25—1).

Notice that, according to (45) and (46), the supports of the functions f;(x—a;) and
Si(x—ey) are contained in J; (mod 1). Next we prove that

52 -
62 lim sup |G} (9] 5 ( 5 =0
(53) fim sup O _ o

s xed; w(al+1)
For x fixed, define the set of i integers K, < K as follows:
K = {keK: xeJ; (mod1)}.

This set is an increasing sequence of integers {k} %0 © K; (40) implies that K, is
infinite, and it follows from (41) that

(54) k“—l = 2k; (i =0, 1, "')'

icm°
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Furthermore, if x € J;, then
(55) le Ky,
and thus we deduce from (45), (46), (8) (see also (39)):

RGN < Y. - = 2iazto(8)
keKx k<l keKx k<l
ot S 00D 0
5 <M |
keKx, k<l keKx k<l
1
DE@ < Y A<y D ate()
keXs k>1 keKx k>!
<_;_ 2 Ko(8) < (0(621-{»1) Je24l~k+1
keKx, k>1 keKx, k>l

which, together with (54) and (55), gives (52) and (53), the rate of convergence to
0 being like that of a geometric progression.
Furthermore, (52), (53), and (50) imply that, if we define

56) %) = ) —file—au),
then
o7 lintggp{ﬁ(—’f‘;z—(}gﬁl—)'—: X1 % €, ri— ] < 61}= 0.

Now we complete the proof of Theorem 2. Let F be a measurable set, and let x be
a point of density for F. By the definition, there exists an infinite subsequence L,
of the sequence X, such that

(58) measFnJ; > 3meas); = 352 (leL,).
Since by (51),
2s1=1
Fndi= U Faj,,,
gq=0

it follows from (58) that, for each / € L., there is a ¢; such that
(59

The function f;(x— ;) is linear in each j; ,, and we deduce from (59) that, for an
arbitrary / € L,, there exists a pair of points x{, x{” such that

measF g, > Smeasjig = 3277 > %6 > 04

28 < PP < 18; xPeF, xPeF;
—1-1y \1/P
©0) AP a0—feP-a)l > yarto(s) = 3P )

> 397 P Qw(xP - xPN P (2(1xP - D).


GUEST


iCE . 1@
196 K. 1. OSKOLKOV APPROXIMATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 4
PWN—POLISH SCIENTIFIC PUBLISHERS

If we observe also (56) and (57), we see from (60) that WARSAW 1979

= FLEARTICA]
2gox,mpmx W(|X2—x1 )27 (-Q(Ixz —Xy D)

Xy, %26 F
which completes the proof of Theorem 2.
Remark. Slightly more accurate observations show that (61) holds at an arbitrary
point x, which is a point of positive upper density for the set F. PROPERTIES OF BOUNDED ORTHOGONAL SPLINE BASES

>0,

(60
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2. Preliminaries and notation

‘We assume that all the functions considered below are definéd on the interval I

=<0, I>.
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