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If we observe also (56) and (57), we see from (60) that WARSAW 1979

= FLEARTICA]
2gox,mpmx W(|X2—x1 )27 (-Q(Ixz —Xy D)

Xy, %26 F
which completes the proof of Theorem 2.
Remark. Slightly more accurate observations show that (61) holds at an arbitrary
point x, which is a point of positive upper density for the set F. PROPERTIES OF BOUNDED ORTHOGONAL SPLINE BASES
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The system {f,™, n > —m} of spline functions of order m, m > —1, is defined
Presented to the Semester for an arbitrary m > —1 in [3]. For m = —1 it is a Haar system and for m = 0
Approximation Theory it is a Franklin system. The functions w{™ for m = —1 form a Walsh system; for
September 17-December 17, 1975 m = 0 the system w{®> = ¢, has been considered by Z. Ciesielski in [2].
The matrix A% is common for all m. It is defined by the connection (1) between
‘Walsh and Haar systems (the case m = —1).

We show that some results of Z. Ciesielski [2] may be generalized to the case of
an arbitrary m, m > —1 (cf. Theorems 1, 5, 6, 7, 10, 11, 12). Moreover, some new
results are proved (see Theorems 3, 4, 8, 13).

We prove that each of the systems {w{™, n > —m}, m > —1, is a basis in
L,()for 1 < p < oo. A generalization of this fact is obtained for systems {D*w{™,
nzk—m}, {H'w™, n> k—m}, 0<k<m+l, m> —1, k-times differentiated

and, correspondingly integrated, where D is the differentiation operator and Hf(t) =
1

§ ) du.

t
In Section 6 we observe that these systems are Riesz bases in L, (7).

2. Preliminaries and notation

‘We assume that all the functions considered below are definéd on the interval I

=<0, I>.
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The Haar functions are defined as follows:

@) =1 for tel

@
= y—1 2v—1
l ]/2/‘ for te <'—2T', W) s
o, = j— 2v—1
Xap+ ) —Y2*  for te ST ?’;_),
0 elsewhere in {0, 1),
20, 1 <v< 24
By {r,,(t) n > 1} we denote the Rademacher orthonormal system, i.e.
r(t) = VZ" 7 (lzn—1+1(1)+ +Zz"(’))'

The Walsh functions are defined as follows:

wi®) =1 and  wu(®) = ra,41(t) ... P2 (2)
whenever n = 1+2m42m4 . 427 with 0 < ny < ... <'n;.
For a given g > 0, AY’ denotes the Walsh matrix defined by

&) AP = Wanss, Zansd),
1

where (f,g) = éf(u)g(u)du and 1<I<2, 1<s<2" For each u >0, the

Walsh matrix 44 is orthogonal, symmetric and satisfies the relation

() AW = 2"‘/1w,(21_ 1).

2F+1
By m we denote an integer parameter m > —1, and by G the operator Gf(r)
= S Sdu. S

Applymg the Schmidt orthonormalization procedure to the set of functions

{1, (:') ™ Gy, n=2,3, ...}, we get a complete orthonormal system
{fi™, n = —m} (for its properties see [4])
Define, for 0 < k < m+1 ahd n > k—m,

5) f;.(m,k) = D‘ff;,("'), g’sm.k) = ka;:(m)

:Nhere D and H are the differentiation operator d/dz and the integration operator

S , Tespectively.

The set { f,:‘""k’, g™, i, j> k~m} is biorthogonal and for m> —1 and 0
<k<m+litisabasisin L,(P)for 1 <p < 0.

The modulus of smoothness of order r > 1 of the JSunction f e L,(I) is defined for

icm°®
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finite p and ér < 1 by the formula
1-rh

o®(f, 8) = sup ( S IA'r'f(f)["dt)”P
0<h<é 0

and for p = oo by the formula

0 (f, 8) = sup {GfO, 0<t <t+rh < 1},
where the symbol 4} denotes the forward progressive difference of order r w1th
increment A.

The space Lip(«, 7, p), 0 < & < r, is defined as the set of functions belonging
to L,(I)for 1 < p < oo and to C(I) for p = oo for which we have

© oP(f, §) = 0(5%
as 6 — 0.

3. Bounded spline bases

For 2 given'm > —1 we define the system {w{™, n > —m} as follows:.
W) = fOR(t), ..., Wi = fEm@),  wim(E) =70,
™

WP, (6) = Z AP,

where 1 <» < 2% u=>0.
1t is clear that

on
®) S0 = ) APWE).
=1
In the case of m = —1 the functions w¢™, n > 1, are Walsh functions and in

the case of m = O they are the functions ¢,, n > 0, constructed by Z. Ciesielski [2].
Let us define for 0 < k< m+landn> k—m

® Wi = DRwi™,
(10) umB = Hew™ .
The definition of a Walsh matrix gives
(11) - (ng’k); u}m,k)) = 6ij: isj k— m,

ie. the set {w™®, w0, i, j> k—m}, 0<k < m+l, is biorthogonal. It is
assumed in this notation that w{™® = wim™, u{™® = w{™.

THEOREM 1. Let m 2 —1. Then the system {w$™, n> —m} is a bounded,
orthonormal and complete system in L,(I') such that

(12) Wi, [y = (wi, ),  BbJj > 0.
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The proof of this theorem is based on Theorem 2.2 of [4] and runs analogously
to that of Theorem 1 in [2]; thus we omit the details.

Using Theorem 6.1 of [4], we get

TrEOREM 2. Letm > —1,0 < k < m+1. Then there is a constant M,, depending
only on m and such that
13) WSROI < Ma2",
a4 qunl‘%(t)l < M,27H,
where 1 <1< 2, u> 0.

In what follows we use the following notation. For fe L,(I), let

n
(s) WmB() = D (fusoywe,
j=k-m
n
19 PER() = D (g £,
Jj=k-~m
) WimO(f) = W), PS™O(f) = P,
1t should be clear that the definition of the system {w{™®, n > k—m} implies
18) WEP(f) = PEO(f) 0<k<m+l, u>0, m3 —1.

THEOREM 3. Let m and k be fixed: 0 < k < m+1, m > —1. Then the system
{W§™®, n > k—m} is a basis in L,(I) with 1 < p < o and for f in L,(I) we have
0
Al
19 F= 3L (.
Proof. 1t is clear that the theorem will be proved if we show the validity of
the followmg inequalities:

B+

@ |35 sl ca] 3 ol wmo, 1even

n=2541
for all sequences {b,} of real numbers, where 1 < P < oo and the factor ¢, , depends
on m and p only.
Let {b,} be a given real sequence and 1 < < 2% p > 0. Then, using the ine-
quality of Ciesielski (Theorem 7.1 in [4]), we obtam the estlmates

+r 2+
S D ]
24t
< Mlzﬂ‘kzn(llz—]./p)( lai,ylp)llp,
where =241

v
Aopyl,y = Z Ag")bzuﬁ-
Ji=1
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For an arbitrary real sequence {«,} we have the equality

s QH41

@) | Y o], =2 S o), uso.
n=2F+1 n=2H41
This and the results of Paley [6] imply
2!‘ Pras
e zorin( 3 ja, " =] Z a1, —]l ¥
o QH+L
< Z bywi], = ]| Z oz,
where

28
Qapyl = ZAﬁf)bzﬂﬂ‘-

=1

Combining (21), (23) and (22), and using the inequality of Ciesielski, we complete
the proof. A similar argument gives

TueOREM 4. Let m > —1 and 0 < k< m+1. Then {4, n> k—m} is
a basis in L(I) for 1 < p < co, and for g in L,(I) we have

=]
@4) g= D Gourumh.
J=k—m

Lemma 1. If f'is a function of bounded variation on {0, 1}, then, for eachm > —1,

there exists a constant M,, such that
SHH1
@5) 2% 3 (g < Myvar,
n=2441

forO<S k< m+1and u>0

This follows from the inequality of Ciesielski, Theorem 4.1 of [4] and from
the property of the L; modulus of smoothness (cf. [1], p. 52).

THEOREM 5. Let m > —1. Then there are constants M,,, B,, such that the inequali-
ties
26) 0 < Mpun < varw(™ < Bun
hold for n > 0. !

This theorem can be proved with the aid of Lemma 1 in the same way as Co-
rollary 1 of [2].

THEOREM 6. Let 0K k< m+1l,m>» —1land 1 < 0. Then the inequalities
@n W Bl ~ ¥, n> 0,(1)
28) llug™Blly ~n7%, >0

hold uniformly in k and p.

(*) The symbol a, ~ b, means that a, = O(b,) and b, = O(a,).
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. The proof follows from the definitions {w{™®, n > k—m}, {u§™", n > k~m}
with the aid of Ciesielski’s inequalities.

4. Lebesgue constants and approximation

Let L™ denote the Lebesgue constants for the system {w{™, n > —m}.
THEOREM 7. The Lebesgue constants of the orthonormal systems {wi™, n > —m}

satisfy the following inequalities:

(29) . LE = 0(), . L = O(logn),

where the factors in O depend on m ‘only.

The proof of the first part is clear. The second part is based on the first part
and on the estimates of the Lebesgue constants for the Walsh system (for details
see Theorem 2 of [2]).

The best approximation in L,(I) for 1 < p < o and in C(J) for p = 0 is
defined as follows: ‘

€D ESP(fw = {.. inf”llf—Trf’"”"Hp,

n

)] Tmb = Z W™, 0< k< m+l.
J=k—m

Now, let E{ (f) stand for the best approximation by polynomials

n

U'gm,k)= z bjfi(m'k)‘

J=k-m
It is clear by (18) that, for each n > 0,
(2) Ef(f) = ES20(fw.
THEOREM 8. Let m > —1, fe L,(I) for 1 < p < w. Then there is a constant
M,, , depending on m and p only and such that the znequalztzes
EZTP(y S N f=WMPf lly € My BT 0(w,
(33)
NS =W DF lly < My, y0@5,5(f, 1/m)
hold for n > m—k+2, 0 < k< m+1.

Theorem 8 is a consequence of Theorem 3 and Theorem 4.1 of [4], and of the
properties of best approximation.

In the case p = 1 and p = co we have the following estimates:

(34) “f" Wn(m)fnl < MmIOEnErE:"l)(f)W:
G5 =W flla < MulognESS(w.

The proof of these inequalities is standard and it is based on Theorem 7.
COROLLARY 1. Let m > ~1, fe L(I) for 1 < p < oo and fe C(I) for p = w.
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Then there are constants My , and By such that the estimate

(36) Lf =W fllp < Man,p00F%2(f, 1/n)
holds for n > m+2, 1 < p < oo and the estimates

(37 1= Wi fily € MalognaGla(f, 1/m),
€1 Hf— WP f lle < Mulog nwiia(f, 1/m)

holds for n = m+2.
Condition (32) and Theorem 9.1 of [4] imply the following assertion: ‘
THEOREM 9. Let m, p and f be given such thatm > —1, 1 < p < o0, fe Ly(I)
if 1 <p < oo, and fe C(I) in the case of p = . Then there exists a constant M,
such that the inequalities

(39) o (f,%)é Mo (iiptp+ > #=BE3 ),
\ i=m+2
and
“ o £ ,1,) et 17, D EE )
i=m+2

holdforn> m+2and 1 < k< m+1.
Inequalities (42) in the case of m = —1 were proved in [5].

5. Fourier coefficients and Lipschitz classes

TaeOREM 10. Let fe L;(I). There exists a constant M, such that the inequality
1 1
(C3)) I(f, o)) < Mm';fwr(er+2(f’ ;)

holds for n > m—k+2, 0 < k< m+1.
The proof of Theorem 10 follows from the definition of the system {ufmo, 1 >
k—m} and from the inequalities of Ciesielski.
COROLLARY 2. If f is a function of bounded variation on 0, 1), then
I(f, u™)] = O(Ujn**Y), n>0,0< k< m+l.
COROLLARY 3. If D™*1f is a function of bounded variation on {0, 1), then

I, W)l = 0(1/n™*%), n>0.
THEOREM 11. Let m> 0, 0 < a < m+1, 1 < p < oo. Then

“2) Z RELI0)

n=—m

converges in L,(I) and it is a Fourier series of the function f € Lip(a, m+1, p) if and
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only if
24

@) Bangy = 27PN APy, 1< 2,
I=1

28
[ X aeatr)” = 00,
=1

THEOREM 12. Let 0 < & < m+1, m > 0 and let the series (42) be lacunary.
Then the series (42) is a Fourier series of feLip(a, m+1, o) if and only if b, =
0(n=).

The proofs of these theorems are omitted since they closely follow in outline
the proofs of Theorems 5 and 6 of [2].

6. Unconditional bases
letm> -1, 0< k< m+l, f, geL,(I) and

(44) f= anf;l(m'k),
n=k—nt
“5) g= Z bg{mb.
n=k—m
It has been proved in [7] that the inequalities
(o) Wit ~( > @ay)™,
n=k—-m
kel b, 2\1/2
@n . lgll> ~ (;m(F) )

hold for 0 < k < m+1 (i.e. the systems {£,{™®, n > k—m} and {g{™®,n > k—m}
are unconditional bases in L,()). Let A™* denote

wink
W for 0<k< m+1,
@k _ n 2
h] ugm,—-h)

W for 0< —k<m+1.

Using the inequalities (46), (47) and Theorem 6, we obtain
THEOREM 13. Let m > —1, 0 < |kl < m+1. Then the system of functions
{*®, n > |kl-m} is a Riesz basis in L,(), i.e. it is an unconditional basis in Ly(I).
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