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1

Let n be integers, S the real line (— o0, ) or the half-line [0, o). Denote by W,(S)
the set of functions xe C = C(S) such that x™eL, = L,(S). It is known
(G. H. Hardy, J. E. Littlewood [7], L. Neder [11]) that functions from W,(S)

satisfy for 0 < k < n the inequality

(1.1 1x®lle < GlIxliE"Ix™](E,

where G = G(k, n, S). A. N. Kolmogorov [8] has calculated the least constant G
in (1.1) on the whole line S = (—00, ). A corresponding result for the half-line
is known only for n = 2 (E. Landau [9], J. Hadamard [6]) and for n = 3 (A. P. Ma-
torin [10]); in particular, the Landau-Hadamard inequality has the form

(1.2) 2V Txle [ lIzop -

[1%1le <

Estimates of the constant G for S = [0, ) were given in papers of A. Gornyr
H. Cartan, A. P. Matorin, S. B. Stechkin and etc. (for references see [14]); pape.
[12] of I. Schoenberg and Al. Cavaretta deals with the calculation of the best constant,

In this note inequality (1.1) is considered for derivatives of not necessarily integer
order on the half-line S = [0, o). The value of the least constant G is calculated
here for small k, n; in the general case lower and upper estimates for G are given.

The notion of integrals and derivatives of arbitrary order has been introduced
by J. Liouville, B. Riemann and in the periodic case by H. Weyl. The subject has
been considered by G. H. Hardy, J. E. Littlewood, H. Kober and others; detailed

references may be found in H. Bateman and A. Erdelyi [1].

One of the following two operators is called integral of order o > 0:

1) 0O = 755 | =0y,
1.4 G20 = 755 Y e oD,

B [19]
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By these formulas the operator J, is defined, for example, on the set M < L of
bounded functions, approaching 0 at infinity faster than any power of the argument;
the operator J¥ is defined on the set & of locally summable functions. The operators
Jy, J¥ are adjoint and for any o > 0, § >0

ToTp = Jups  JEF = TEp.

For y e M the function J,y uniquely defines the function y (see [15], Theorem
153). Consequently, on M the operator J, has the inverse operator D, = J;1. In
the case of integer ¢ we have (J;»)? = (—1)° and thus D,x = (—1)°x for
xeJ, M. If a function x has a compact support and x € W,,(S) for some integer
m> o, then xeJ,M and D,x = (=1)"J,,_x™, since J,Jp_,x™ = J,xm
= (—=1"x. For 0 < ¢ <1, m= 1, we have (see [16], no. 9.8.1)

[}
1.9 P)O) = T S (=) (1) —x(m)l .
By this formula the operator D, can be extended to a larger set of functions. Such
an operator has been considered in papers [4], [S] by S. P. Geisberg. In particular,
in [4] it has been proved that, if § = (— 0, @), 0 < 5 < ¢ < 1, then there is a finite
constant G = G(S, ¢) such that for any function x e C satisfying the Lipshitz condi-
tion of order y = y(x) > o the inequality

[I1Dsxlle < G|[x1[&*°(|Dyx|[d"
holds. In [5] the best constant has been found in such an inequality in the case
0<s<l,o0=2 (xeWy(—~w, ), D,x =x").
In what follows we shall also understand fractional differentiation as a certain

extension of the operator D,, and the process of extending of the operator D, from

the set J,M to a wider set W, = C will follow S.L. Sobolev’s scheme. Every-
where below S = [0, ).

Denote the inverse operator to J} by D};if o is a positive integer, then
Dix = x'. Let K be the set of infinitely differentiable functions on [0, c0), vanish-
ing outside of the interval [a, 5] < (0, ), the latter one depending on a function.

.1t is not difficult to verify that K ¢ J*& and for pek
-D:‘P = J;—nqj(m):

for any positive integer m > o. If o is an integer, then D¥K < K, and if o'is not an
integer, then for pe X
(D)) = O(—Y)
therefore DF¥K < L for any ¢ > 0.
The operator D} is an adjoint operator to D,, i.e.

when t- o0,

@ o
beé‘v)df = S ¢pD,xdt, peK, xel.M.
9 0
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‘We use this relation to extend the definition of the domain of the operator D,. Given
a pair of functions x € C[0, o), y € L, [0, ), we say that xe W, and y = D,x, if

L] ©
(L.6) S xDipdt = S pydt Vpek.
o 0

If o is a positive integer, then, as is well known, (1.6) implies that x has a locally
absolutely continuous derivative of order c—1 on [0, 0), y = (—1)°x?; thus W,
coincides with the class W,[0, o) introduced above.

It is plain that J,M < W,. Notice furthermore that if the function xe C

o0
possesses derivative x™ of order m > ¢ and S =971 |xm(f)| dt < oo, then x € Wyand
1 .

Dyx = (= 1)"Jm_ox™; this fact may be verified directly, by proceeding from (1.6).
It will be proved below that, if 0 < s <' ¢, then W, = W;, D,W, = C and the
modulus of continuity
sup

(I 7) |1x¥]lc<é, xe

of the operator Ds, on. the class @ = {x € W,: ||Dyx||i, < 1}, is finite for any
8 > 0. Along with (1.7) we will consider a problem formulated by S. B. Stechkin
[13] concerning the quantity
(1.8) E(N) = inf sup||Dsx—Txllc

TS <N xeQ
of the best approximation of the operator D, by bounded linear operators I on
the class Q. S. B. Stechkin [13]‘noticed that for any N >0, 6> 0

w(é) = HD:x“C
: Q

a9 E(N) > ©(8)—N$
and consequently
(1.10) EN)z Q(N) = ili%{w(é) —Né}.

The transformation: x(z) = x,(t) = x(ht) maps W, into itself while (D,x)(t) =
#(D,x) (ht) for any y < o. This easily implies the validity of the formula (cf. [13],
2D e

() =Gd°*, G=ow(l).

(1.11)
If we insert it into (1.10), we obtain the inequality

s{o=5\ Lgonres o—s
(1.12) E(N);.Q(N):;(T)G’N S

2

Along with (1.7), (1.8), we define the quantity
@5 &(N) = 10— F Y llcovwd
Y esn, om0 '

inf
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of the best approximation of the fixed function
ta—s—l

"= 1=y
by the functions (J¥£). In the case ¢ > 1 we have (J;f0) = Jf ,;land,if0< o < 1,
then we confine our considerations in (2.1) only to functions ¢ such that J3{ is
locally absolutely continuous. It will be shown below that s(N) = E(N) = Q(N).

Let us list some properties of the quantity e(N). For an arbitrary A > 0 the
mapping {(¢) — {u(t) = A*{(ht) is one-to-one and

\/ o=\ L 10— QXY = ko)~ (F2)1].
Therefore, taking & = N5, we get

@2

@3 W) = N7e(1), v =222

LeMMA 1. The quantity &(N) is finite. Moreover, the following inequality holds

2°+1 (o) I'(e)

@4 (F(s+ DI(o= s)) < TOTo—s+1)

Proof. We first show that, for a > o—1,
2.5 tle=t = JFXr—% " o(t),
where

~ . I'la+DI'(c+1)

2 1) = m\ = P m = .
@6 e ,;,“ 0%t = R CmE D a—otmt DI +1)
Notice that (2.5) can also be written in the form
@1 Dit%e=" = 1°~% "o (t).

If the number ¢ is a positive integer, then in (2.6) only the first ¢+ 1 terms do not
vanish; in this case the formulas (2.6), (2.7) may be checked sufficiently easily.

The series (2.6) converges absolutely on the whole real line. Multiplying it by
the series for e~*, we get

"’_'9(’)"2( 2 Z“" =R

n=0

Transform the coefficients of this series. We have

I'(a+n+1)

at+ny(n) . 44
=ty

and on the other hand

(ta+n)(n) — (tnta+n—a)(n) = Z C'l':(ta)(k)(tn-(-n—u)(n—k)

k=0
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. T(+1) I'(a+n—a+l)
—f“ZC To—k+1) Ta—otk+1)’

and consequently

1 _ I'a+n+1) )
Z k!(n—k)!F(a—k+1)F(a—o‘+k+1) T nil e+ DI@+)I(a+n—o+l)
k=0 .

This implies

Z - k)'

1
= I'(a+ I)T(a+l); Kle—k) To—k+ DI (e—o+k+1)
1 I(a+n+1)
=l T@a+n—o+1)

and hence

» N (1) I(a+n+1)
e 9(’)=; Al Tatn—o+1) "

We therefore have

1y F(a+n+1) o
n! I(atn—o+1)"°

e =
J*-%e"o(t) ;0

But
1

S(t—u)"‘lu”""*"du = foer
]

I'la—o+n+1)

T = TarntD

1
I'(o)
Finally we get

o0
—1y _
Jeeo(t) = Z——( n!) 140 = e,
n=0
which implies the validity of (2.5) and (2.7).
Now take for ¢ in (2.1) the function for which

t

S e ™"o(n)dn,

-5

I =f0) = m

where a = 0—s+y—1, and the parameter y satisfies the condition ¥ > 5. We have
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!

.9 “t{or-teoenianar
0

R
\/¢=||fuL<Tm—_—S)§t

o0

- 37(7)71’(??) S e ()l di
0

0 ©
1 y—S+k~-1,-1
< TOTe=9 ;l“kl§77 e~"dn

Ia+)I(o+1)
sSL() I (o—s5)

1
; KT T(o—k+ D]

Evaluate the sum of the latter series. Show that

- 1
R= Z <
£y ' (o—k+ D]

If ¢ is a positive integer, then

2C'+1

I'e+1) "

2.9)

-

T T(o+1)

and therefore only the case of non-integer ¢ should be considered.
We have

2.10)

N T+
U= 2 FiTe—k+n > 171 <1
Hence
@1 (-1 1 r

S RITG—keD) O 2 FTG—k+D) ~ T@+D)

Furthermore, as I'(6—k+1) > 0 for k < ¢ and (—1)F*1-¥+1[(¢—k+1) > 0 for
B (= 1)for+k+1

k > o, we get
14 (= 1)1
R =
kZ“P(a—k+1)k! RS 2y oy

By (2.11) the last sum on the right equals 0 and therefore

1
R<2> 1
<2; K To—k+D "

The sum of the series

1
r= ; A To—k+1)

e _®
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is positive, since all the terms (k) of this series have alternative signs, the first term
B(lo]+1) > 0 and the ratio

_|B&+D| _ k-0

50 | FsT < b
Hence
N 1 241
R< 2; BTo—k+D) ~ T+l

From inequalities (2.8), (2.9) we finally obtain

29¥1 (g + 1)
V=l < FoTtg

Now find the function (J¥{)' = J¥f. We have
1

2.12) y>S5 a=oty—s—1.

[ outae 1

1 = Ty ) 7o

-

- T | T .

0
Hence, by (2.5)

1
GO = 1= S)S o)t

t
tn—s—l

—1,-7 — 1 : y—1,—1
EEAQIACED) §"v e = 0O 1 § e
Thus

©
a—:—

6-2NO = Tosr=s Sn”‘ end

and consequently

©

* 1 e S ¢ —‘
16721l = T T s ogt S’? iy dt

0

2.13)
R et T _Tlo+y=s)
I (o—s+1) 4 T (o—s+1)
Relations (2.12), (2.13) imply the following inequality for (2.1):

( 2+ g+ —5) )
sI'(y)(o—s)

I(o+y—s)
< TOIle—s+D’

2.19) y > 5. i
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By (2.3) the function &(NV) is a continuous function of N. Therefore, passing in
(2.14) to the limit when y — s, we get (2.4). Lemma 1 is proved.
Let us now obtain an estimate of &(N) from below.

LemMMA 2. For an arbitrary h > 0,

_s 1(0) s i
"‘( h F(o'—s)) > T+

Proof. If \/ ¢ < oo, then the limit lim {(z) = {(o0) exists and is finite. And
100

2.15)

if ¢ = {(o0) # 0, then for ¢t —»

U0 S Ty

But in this case

16—yl > lim) [(JFD )] —

ta—l
I’(o'—-s)} =
Therefore in (2.1) the considerations may be restricted to the functions ¢ with

£(0) = 0. But if £(0) = {(00) = 0 and \/C < N, then [|fl|r, € N/2. For such
a function we have

N

DO < i

t>0.
I'(o)
I(o—s)’

and suppose that a function { satisfies the conditions £(0) = {(0) = 0, \/C <N.
Then we have

Let the parameter 4 > 0 be connected with N by the relation N = 2h~°

10— (&8 llco, ) = S{G(t) (FY®}a = Lm—(lz‘@(h)
o=t N I
P(a~s+1) 2T(e+1) o I(o—s+D°

which proves the lemma.
Let us show that for s < 1, ¢ < 2 the inequality (2.15) turns into an equality.
This will be done by means of a concrete function  which is constructed below.
For an arbitrary & > 0 define

(2.16)

ox(?) = F—Z::T)max {0,¢-*—n~=}.

Consider the equation
$o—s— 1

@17 I'(c—ys)

O—(2L) =on, 6() =

icm
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with respect to the function , on the half-line (0, o). It is not difficult to verify
directly that (for 0 < 5 < 1, 5.< ¢ < 2) the solution of (2.17) is the function &,
with the following properties. On the interval (0, 4],

h-s

(2.18) Te=9

L) =

On the half-line (&, )
e 1
= ronra—s 1§ a-w-etder e § )
I'(c~s)I'(1—0) p

it

@19) &

if0<o<1; G)=00)ifo=1;

A

40 = =g 1 )

1 — ) o~ du+

+—s)t~* § (l—u)l“"u"““‘du}

it
if0<s<1<o0<2, and finally,
l—-s
&) = m’
if 0 < s < 1, ¢ = 2. By means of differentiation of these expressions for {; we see
that £i(¢) < O for e (h, o). In addition,
h—!
Lw(h+0) < Ly(h—0) = To=9"

Therefore & is nonFincreasing and non-negative on (0, o) and () = 0.
In all cases we let {;(0) = 0. Then we get

I'(0)
I'(o—s)

— VALY lly = -5
16— (EE e = llealle o Tlo—s+1D) " .
These relations, definition (2.1) of the quantity e(N), and inequality (2.15) imply
the validity of the following assertation:

(2.20)

\0/ Ly = 2h~°

LeMMA 3. If s <1, s < 0 < 2, then for any h > 0
_ 5 o s L0
(2.21) &(N;) = & Tw=siD)’ Ny =2k T35

3

Consider now some properties of the operator D, and of the class W, defined in
Section 1.
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Since £(V) < co, there exists a function { with the properties as follows:

G.1) ViE<w,  t0 =0, [6=*)]k<oo.
Using the function £, define the operator F on W, by the rglation
(.2) E @) = | xt+matm+ § O t+memdn,

1] 0

where p = 0—J}¥C. It is clear that Fx e C.

LemMa 4. For an arbitrary function x € W, and { with the properties (3.1) the
following identity holds:
(3.3) Fx = Dyx.

The following assertion should be proved:

- o0

SxD;‘q:dt = S(prdt Vo e K.
0 o

(3.4)

It follows from definition (1.6) of the function Dyx that for any ¢ € [0, )

§ D E+np@dt = | x@E+D 02 ) @) 2.
[ 0
Hence
© ) £ 0 3
og pFxdt = 05 x®pE-da@ds+ § x® o) 0rp)E-7)dvit.
0 [ 0

Introducing this expression into (3.4), we see that the following relation should be
checked:

& &
3.5) D) ®O- {9 -2t~ [ e D2p) E—)dr = 0
0 0
for £ & (0, ). In the second integral substitute o = 60— (J¥*{)'; this implies
g &
(3.6 §9(f) (DEg)(§—7)dr = (JE,D¥p)(H)— S(J:D'(r) (D¥e) (¢—)dr.
[}

We have J&,D¥p = D¥gp. The second integral (let us denote it by4) in (3.6) may
be represented in the form
&

A= pE-ndr(»).

0
But (3.6)-(3.7) give (3.5), which proves the lemma.

THEOREM 1. In the case 0 < 5 < o the relations
(3.8) Wec W, DsW,c(C
hold, and for arbitrary N > 0, 8 > 0 the estimate
3.9y w(8) < e(N)+N8 <
is valid.

3.7
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Proof. Embeddings (3.8) follow from representations (3.2), (3.3) and Lemma 1.
Furthermore (3.2)-(3.3) give the inequality

DX < 1xlle \V/ E+11Dsxlze, 18— (oY lles
which implies (3.9).
From definition (1.7) of the quantity w(d), from the its finiteness, and formula

(1.11) it follows that for functions from the class W, the inequality
(3.10) - NIDsxlle < GlIXlIElIDexllfs, G = (1),
holds. '

" Relations (1.11), (3.9) give the following estimate for G:

G < &(N) 5~ -9 L Né*°,

Minimizing the right-hand side of this relation in 4 > 0, we obtain

@3.11)

G=ol= (%)HSN(U;S)SI"—‘N = (V)

Statement (2.4) of Lemma 1 and inequality (3.11) give the following estimate
from above for G:

a+1 o—.
G < I'(c+1) ral S)‘
I'(s+DI'(c—s+1)
An estimate from below-of the constant G may be obtained by means of any
function x € W,. We use the function -

2(1—#y—1, te]0,1],
u(t) =
-1, te (1, c0)
for this purpose.

LeMMA 5. If u is defined by (3.13), then ue W, and

(3.12)

(3.13)

lle =1, 1Derlz, = 2o+ 1),
14 103l = (D) 0) = Froatl.

Proof. We first verify that the function X = ¢ = const belongs to W, and
D,c = 0. It is so for integer values of ¢. Let o be non-integer. By virtue of (1.6),
we should prove that

o0
(3.15) { Droat=0 Vpek.

[1]
For any positive integer m > ¢ we have D¥p = J*_ ¢ = (J¥_,o™ V). The
function ¢ = J¥_,¢™~ " possesses the properties (0) = 0 and y(¢) = 0(~°) for
t — co0. Thus

o0 =<} .
S D¥pdt = Szp'dt =0,
0 [

i.e. (3.15) holds.


GUEST


30 V. V. ARESTOV

Consider now the function
1 o
xa(t) = m(l—t)h

where (1-1), = max{l—¢,0}, a > 0; it is clear that x, & M. Further we have
JpXa = Xayp for any a > 0, § >0 and thus Dyxeyp = Xo. Hence x,€ W, D,x,
= Xo and DsX, = X,_s.

The function (3.13) may be written in the form u = 2I'(¢+1)xo—1 and thus
u € W,. Properties (3.14) are verified quite simply and our lemma follows.

The function u gives the following estimate from below for G':

D;u(0) {2 (e+ 1)}
([l [&= 1. DgulIZe, = TT(e—s+D)
Let us combine inequalities (3.12), (3.16) in one statement.

THEOREM 2. For the best constant G in (3.10) the following estimates hold:
{2D(o+ D= Te+l) %o
@17 Tloo <6< —

(0—s+1) I'(s+1)(c—s+1)

Estimates of the constant G for positive integer values of the parameters s, o
were treated in papers by A. Gorny, H. Cartan, A. P. Matorin, V. M. Olovjaniohni-
kov and others. For detailed references see Stechkin [14].

A function X € W, for which (3.10) turns into an equality is called extremal.
It is plain that together with X any function of the form cx(ht) is also extremal.

THEOREM 3. If 0 <5< 1, 5 < 0 < 2, then the best constant in (3.10) is

{2(o+ 1)} ~=°
I'(o—s+1) °
and the function u defined by (3.13) is extremal.
In the case s = 1, 0 = 2 we have G = 2, and (3.10) coincides with the Lan-
dau-Hadamard inequality (1.2)
Proof. Statements (2.12) of Lemma 3 and inequality (3.11) imply the estimate

{2l (c+ 1)} ~5/=
I'(o—s+1)
The statements of the theorem follow from inequalities (3.16), (3.19).

(3.16) G>

(3.18) G=

(3.19) G<

4

There are some values of parameters s, o for which formulas (2.21), (3.18) are
not valid. To prove this we compute the quantities &(N), G, in the case ¢ = 2,
1<s<2. ‘

As above, let 8(z) =

_1+12
V2

1 s —
TG )t‘ , 2€(0,0); h>0. Put b=1+ )2 and a

. Define_the function £, on the half-line [0, c0) by the relations
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{:(0) =0,
L) = - (20 -06H),  te A,
@.1) o
b = L2 0oh-0h), 1, B,
L) = 0°(2), te (bh, ).

The function 6 is non-increasing on (0, o0); therefore £, > 0 on (0, Al and &, < 0
on (h, bh]. Further, since

'/2 (0@ —0(h)} = '), & e (ah, B)

and since 6’ is non-increasing, the function { is non-decreasing on (%, ¢). More-
over, we have [,(c0) = 0. Hence

> 20 Y \2-s(9s/2
=\o/;-,,= =1“_(2—T)(1+‘/2)2 @2-1).

Consider now the function ; = J¥{, = (J¥)'. It is not difficult to verify that
Ay is continuous on [0, o0), 4, linear on the intervals [0, A, [A, bkA]; A,(0) = O,
Jx(ah) = 0(ah); A coincides with 6 on [bh, ), A(t) < 6(r) for te [0, ah], A(z)
> 6(¢) for te [ah, bh]. Furthermore, elementary calculations give the following
value for the quantities |[0— A4f]z:

42 N 28(+0)—2L4(h+0)

2—5
@3 e = 110= Al = 10-GIE 1l = 5 (1+VZP@=1).
Hence the inequality
44 (V) < &
follows.

‘We shall now obtain the estimate from below for G = w(1) and hence (by
(3.11)) also for (). For the latter purpose consider the function

2(t~12-1, tel0,d],
@.5) u(t) =11-2(-0)% tela,b],
1, t> b

We have u e Ws, |lullc = 1, ||#"]|, = 4. The functions »” has a compact support
and thus #'' € M. Therefore u = 1+4J,¢"" and Dsu = J,_,u". Hence

©

1— syt 250982 __ 1
PO = 75 )St 0 = 755 (1+V2 @70,

By virtue of (3.10) this implies the following estimate for G:
4.6

G=0()> l‘(3 (1+1/2)2 (2512 1),
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Using (3.11), we see that actually equality holds in (4.4) and (4.6). Thus we
have the following statements:
Ifl1<s<2 o0=2, then

%))

where the quantities &, and Ny, are defined by formula.s' (4.3) and (4.2).
If 1 < s <2, then the inequality

e(Ny) = &,

25 3 2-3 kR
11D, < fé—_s—)(l V2P -Dxll (%112,

holds for functions from the class W, and the function (4.5) is extremal.

For s = 1 we again obtain the Landau-Hadamard inequality (1.2) but with
another extremal function.

-

Consider now problem (1.8). Let

6.1 U(T) = EWN)= iof U(T),

sup || Dsx—Tx|lc,
xeQ g N
where Q = {xe W,: ||D,x||1, <
are equivalent.
THEOREM 4. E(N) = ¢(N).
Proof. Let the function ¢ satisfy the conditions \/ <N, {(0) =0 and o
= 0—(J;{) e L. Define the operator Ty by the following relation:

1}. We now show that problems (5.1) and (2.1)

©

(52) (Te)(t) = o)) = § x(e+m)dL(y).
0

It is obvious that ||T¢||¢ = \/ { < N. Furthermore, by virtue of Lemma 4 we have

©

(Dsx—Tpx)(t) =OS e(n) (D,%) (t+n)dy.

Therefore, E(N) < U(Ty) <

(5.3)

follows.
Using (5.3) and (1.12), we have

Q) < EQV) < &(N).
In the case 0 < 5 < 1, s < ¢ < 2, by means of Theorem 3 and Lemma 3 we verify
that Q(N) = &(N) and consequently E(N) =. s(N).

We now prove that the inequality E(N) > e(N) holds for o > 1. Denote by
Co the set of continuous functions with compact supports on [0, o). It is obvious

llellz, and hence the inequality
E(N) < ¢(N)
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that R = J,Cy € W,nCy. PutQ, =
ator T be such that ||T[E <

{x e J,Co: ||Dyxllc
N and U(T) < 0. Put

u(T) = sug (Dsx— Tx) (0).

1} Let the linear oper-

It is plain that u(T) < U(T) < co. On the set C, we have

[
(5.4) (T ©0) = | xat,
0
where \/ ¢ < [|T|I& < N and we may suppose that {(0) = 0. Let x € J,C, and hence

x = J,y, where y € Cy. Then

(Tx)©) = (z—1)y~'y(v)dzdl(¥)

T(O')

ne3g

y(r)S (r—1y-1dL () dv = S yJ%  tdr.

[} [}

o0

)

o0 T 0
I’(o) §
Besides, we have

(D9)(0) = (2.0, () = { Oyt.
[\
Consequently,
oo

Dex—TO) = § O—-J2,OD,xdt, xel,Co.
0

And since y = D,x is an arbitrary function from the class C,, we have
u(T) = |l6— J:—lfﬂL(o o < UT).
Hence ¢(N) < U(T) and &(N) < E(N), which completes the proof of our theorem.
It may be seen from the proof of the theorem that, if the lower bound in (2.1)
is attained for a function £, then an extremal operator of problem (5.1) corresponds
to the function defined by (5.2). Conversely, an extremal function of the problem
(2.1) corresponds by (5.4) to each extremal operator T' of the problem (5.1).
Along with E(N) define the quantity

(5.5 e(N) = inf sup {(Dsx)(0)—Tx}.
iT|loe <N xe

Stechkin’s inequality holds for e(N), just as for E(N):

(5.6) e(N) = Q).

Repeating the argnments used in Theorem 4 we verify that e(N) = e(N). It
follows from the results of Gabushin [16] that e(N) = Q(N), ie. (5.6) turns into
an equality. Thus

s [o—
E(N) = e(N) = e(N) = ;( -

5.7 d

(0-3)jo
) G IUN— (0~8) /s,

3 Banach Center t. IV
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where G = w(1); in particular, the calculation of the best constant G in inequality
(3.10) may always be reduced to the problem of the best approximation in L(0,c0) of
the function 6 by functions J¥ , {.
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ON THE UNIFORM CONTINUITY OF METRIC PROJECTION

V. I BERDYSHEV
Institute of Mathematics and Mechanics, Sverdlovsk, U.S.S.R.

Let X denote a normed space, M a convex set in X, for x e X, xM = inf{{|x—y||:
¥y € M} the distance from x to M, x,y = {y € M: ||x—y|| = xM} the set of the
elements from M of the best approximation for x. In what follows, M is assumed
to be an existence set [9], i.e. xy is nonempty for any x € X. A map x — xp (set-
valued, in general) is called a metric projection. It is well known that the metric
projection is single-valued for any existence set in the strictly convex space.

In Section 1 there is considered a problem of estimating ||x) — yal}| from above
via [|x—y|| and geometric characteristics of X under the condition of strict con-
vexity. Section 2 is devoted to the metric projection from L(S, x) onto its finite-
dimensional subspace. The main results are contained in Theorems 3 and 4.

1
Further we will denote by 0 the zero of the space X and ¥ (x,r) = {y e X: |[x—yl|
<r} (r>0), V=V, 1). Let d(M) = sup{||x—y||: x,y € M} be the diameter of
the set M < X. For a given set M contained in the plane P < X, we denote by
s(M) the width of M with respect to P, namely
5(M) = s(M)p = inf{ sup f(x)— inf f(x): fe (P—p)* |Ifll =1},
xeM—p xeM-p

where p is an element from P and (P—p)* is a conjugate space to (P—p). Assume [1]
) 2(t) = Q@)y = supd(MnV) (=0)
where the supremum is taken over all the hyperplanes P < X such that s(PnV)p < ¢

The function £(¢) is nondecreasing and continuous in (0, 2].
Let us estimate [|xp— yx!| by means of 2 in the case of a strictly convex X.

LeMMA 1. Let M < X be the convex existence set, x*, x* ¢ M, ||x}—x%|| > 0;
then the inequalities
@ lxke—xEll < lIxi—xzll, *M=2lx'—x*| < ¥'L<
hold for the line L = {(1—Dxj+Ax: |A] < o0},

Proof. The first inequality and the inequalities x'L < x!M (i = 1,2) were
established in [1] (see also [10]). It is easily seen that the element z e [x?, x?] with

M (i=1,2)

3+ [35]
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