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1. Introduction

In this paper we give a generalization of the martingale maximal theorem (see
e.g. [11]). A generalization of the notion of stopping time is also introduced. Among
other things, we show that the inequality with respect to the Py(-, w) polynomials,
playing a basic role in Carleson’s method (see [1]-[10]), can be closely related to
the above-mentioned maximal theorem. These results are also used in an essential
way in papers [8] and [9].

. 2. Stopping times

Let (X, o, u) be a probability space and (I', <) a countable directed index-set.
o < f will mean that @ < f and o # B. We assume that every non-empty subset
Ty of I has a minimal element. The set of minimal elements of I'; is denoted by
minly. If I, = @ is the empty set, then let minI'y = co. Further, let I’ = I'U {0},
and y < oo for every y el : )
Denote by 4 = (#,, y €I') a stochastic basis, i.e. a nondecreasing sequence
of sub-o-fields of . &, = \/ &, will denote the c-algebra generated by (o,

yel'

yel).

DEFINITION. A relation T = XxI" with the domain X is called a stopping time
of the stochastic basis A if

@) {z=10a} ;= {xeX: (x,0)ev} e, for each a el and

(if) for every xe X a, fe {r =x}:= {yel: (x,y) ez} implies a«p and
B<€a.

If I'is a linearly ordéred set, then 7 is a function, and in this case 7 is a stopping
time in the usual sense. We note that (ii) gives

(6] {t=djn{zr=4}=0 if a<S§p.
Foreveryxel'let fo: X — K (K = R or K = C) be an & ,-measurable func-
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tion and B a Borel subset of K. Then
@ {tg=x}:=min{x el fi(x) eB} (xeX)
defines a stopping time 75 of («,, ye I').

Denote by 7 = 7 (4) the set of stopping times of 4. In the set 7~ we introduce
an ordering denoted by <.

DermNITION. For 7, 0€ 7 let © < ¢ if for every x e X the following holds:
for each B € {o = x} there exists an « € {r = x} such that § < a.

An elementary calculation shows, that in this way an ordering is defined in the
set 7. If I'is linearly ordered, then v, o € J are functions, and in this case < gives
the usual ordering of functions. It is easy to see that for the stopping times introdu-
ced in (2) the following holds:

3) B, B, K implies 75, < 7p,.

3. A generalization of the concept of orthogonality

Let G = {gut ael'} = L := I*(X, o, p) be a system of functions. For a sub-¢-
algebra # of o let E(f|#) denote the conditional expectation of f relative to 4.
Further, let o/ v o, be the o-algebra generated by oA, and ;.

DEFINTTION (see also [7]).

() The system of functions G is called an A-orthogonal system (briefly A-OS)
if, for every o, feI’, x # 8,

“@ E(gmgﬁldavdﬁ) =0.
(ii) If there exists a system of sets I, € </, (x eI") such that
® Elgallot) = IT) () (xeDD),

then the system G is said to be an A-normed System. Systems which are 4-orthogonal
and A-normed are referred to as A-orthonormal systems (for the brevity 4-ONS).

We note that any system {g,: « € I'} = L? can be made 4-normed by multi-
plication gz by an appropriate «,-measurable function. If, for every a eI, oo =

{X, @}, then E(g.gplst oV otp) = Sggﬂdp, and so in this case the above defini-
X
tion reduces to that of usual ONS.

We can prove the following generalization of Bessel’s identity for A-ONS
(see [7], Theorem 1). :

THEOREM 1. Let G = {g,: ael') = L2 be an A-ONS, I'y = I' a finite subset.

Then for any fimction f e L? we have
© im'{)§ - Z dase] ds: 2 e LXK, sty ) = (IfPdu— S §IEGRAL P
zely X aelaX

and the infimum is attained in the case e = E(fgu|ds) (2 ely).

(*) I(A4) denotes the characteristic function of the set 4 = X.

L

icm

GENERALIZATION OF THE MARTINGALE MAXIMAL THEOREM 209

In the case o, = {X,0} (xel’) this identity reduces to the usual Bessel
identity. (6) immediately implies the following generalization of Bessel’s inequality:

COROLLARY. If G = {gu: ael'} = L* is an A-ONS, then for any function
fel?

@ > Vst < 1.

Besides let us introduce the following generalization of the concept of Fourier
coefficients and that of Fourier expansion.

DermvITION. Let G = {g,: aeI'} be an A-ONS. The function E(fZ.|,)
(¢ €l) is called the a-th A-Fourier coefficient of the function f e L? with respect

to the system G, and the series Y, E(fZxl/s)gx the A-Fourier series of the function
ael

f with respect to the system G.

4. A maximal inequality
Let I'= N:= {0,1,2, ...} and denote by < the usual ordering of N. Then for
every A > 0 the function
¥(x) = min{n e N: |E(f |a,)(x)| > 4}
is a stopping time relative to (s£,,n € N) and
® R B 14)] > 3} = pfy < 0} <5 | 1fPd.

{r< oo}

Indeed, using

IE(f 1) < EQf P, § IfPdu= § EQfRPI1a)du

r=r} r=n}
(see e.g. [11]), we obtain

pr<o} =D ub=ny<y 2 | B/

neN neN {v=n}
1
<D § rdn= § irpa,
neN {r=n} {r<m}

which is the desired inequality.
(8) is the well-known martingale maximal inequality. We give a generalization
of this inequality.

THEOREM 2. Let {hy: « € I'} = L2 be a system of functions for which
® E(h lgltaV tp) = 8a5 (%),
if a¢p and B+ «. Further, let
{v=x}:=min{xel" [E(fh|Z)(®| > 1} (xeX),
_m(ms the Kronecker symbol.

14 Banach Center t. IV


GUEST


210 F. SCHIPP

where % > 0. Then 7 is a stopping time of the stochastic basis (o ,, « € I') and
' 1
o) Dutr=ap<gr § 1rrde.
ael’ * {re<x}

Proof. We first show that g, := I{t = a}h, (@ €l) is a (&,, « € I)-ONS.

Since I{r = o} is &/,-measurable, by (9) we have
E(g 8slaV stp) = I{t = o} I{x = B} E(haligl sl op) = 0
ifegpfand f&a.Ifa < forf < o, then by (I) I{z = a}. I{z = B} = 0; therefore
in this case g.gz = 0. Finally, in the case o = § by (9) we get
E(lgal?| ) = I{z = a} E(th|*o,) = I{7 = a},

ie. {g.: ael'} is A-normed. ‘

Applying the generalization of Bessel’s inequality to the function I{r < w0}f
and using the equality

I{z = o} EI{z < 0}fh|ds) = I{1 = a} E(fh)s4,),
we obtain

N § e = BRI du < {1 < o0)i7 2.

ael' X X

Since by the definition of v we have |E(fh,|,)| > 1 on the set {r = a}, the last
inequality indeed implies (10), and Theorem 2 is proved.
IfI'= Nandh, = 1 (neN), then v = » and in this case from (10) we obtain (8).

5. Examples

In this section we give some examples of the con‘ce‘pts introduced before.

Let o= X, @} c o, c... c A, = .. = be a sequence of s-algebras.
Further, we investigate function systems

8, = {gh: ke )} c I*(X, oo, i) (neN*:= N\ {0})
having the property ¢ = 1 and
an E@igllat,) = 8y (i,jeJ,, neN¥),
(e. D, is an B, = (B%, k €J,)-ONS, where #* = Ay (kel,)). Here J, <
{n, —n: ne N} and 0 € J,. For
=+
p=(p,p2,..)ET = Ul(Jlizx ox Ty x {0} x {0} x ...)
n
we set

o0
vo=[] o
j=1

The system ¥ = {y,: p e J} is called the product system of systems {D,,n e N*}.

In the case of @, = {1, g,} this definition gives the usual concept of the product
system.
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Further, let p* := (0,0, ..., 0, Ppy1s> Pus2s ---) if p = (p1, P2, ...) €J and we
set I':= {(p",n): peJ,neN}

In the set I" we introduce an ordering (denoted by <). For o = (p", ), f =
(g, m) el'lete < Bif n < mand p™ = g™ Clearly, in this way a linear ordering
is defined in I, I'is countable and any mon-empty subset of I" has a minimal el-
ement.!

For a = (p",n) eI let o, = &, and y, = pn. Then (Fy, x €I') is a non-
decreasing sequence of g-algebras and

(12) E(pappldo v hp) = 8,y if agf and f<a.

Indeed, if « = (p",n), B = (g™, m) and n < m, then a<f implies that there
exists an s > m such that p* = ¢° and p,s # ¢,. Then, by a well-known property
of the conditional expectation (see e.g. [11]), we have

s—1 s~1

E@dalte-) = || op 11 w0B@aemiia, 0.

J=n+1 J=m+1
Since
E(p2-g%lyyl? s 1) = E(9F 0% E(lpps2l £ ) 1)
and, by (11),
E(lypp1s) = E(|go§f;1‘|2E(]ng$22|2 ]‘d.ﬂ-l)lds) =1,
we get E(papylof;_;) = 0. This implies
E(p. sl 2V Lp) = E@a¥pltm) = E(E@aplds—1)|¥m) =0,
which proves (12) in the case of a4 f and < «. If « = f, then the proof is similar.
Let us now consider the following special cases:

1. Put X = [0, 1), u the Lebesgue measure and o the class of Lebesgue measur-
able sets of X. Denote by (¢,, n € N¥) the Rademacher system, i.e. define

1 O0<x<1p),
7109 ={—1 apr<x< ),

@a(¥) = 9.(2""'x) (neN*) and let @, = {1,¢,; (neN*). For every n define
o, to be the g-algebra generated by the functions ¢, ..., @,. It is easy to verify
condition (11) for @,.

In this special case (10) gives an inequality of P. Billard [1] (see also R. A. Hunt
[5], inequality (8)), playing a basic role in papers [1], [5] and [10].

In this example the Rademacher system can be replaced by any system
{gp,,n e N*} = L*(X, o, p) consisting of independent functions having the prop-
erty {@.du =0 (neN*; see [8], [9)).

X

p(x+1) = @1(x) (xeR),

2. It is easy to see [8] that every Vilenkin system is the product system of systems
D, (n e N*) satisfying condition (11). Applying Theorem 2 to such systems, we
obtain some inequality of R A. Hunt and M. Taibleson [6] and J. Gosselin [3].
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3.Let X = [0, 1], let #_, (ne N*)be the class of 2~"-periodic Borel measurable
sets of X and u the Lebesgue measure. Then %, > #_; > ... and it can easily be
proved (see e.g. [12]) that for every function fe L*(X, &, ) we have

-t

E(fi@.) =27y fetR2),
=0k

where 4 denotes the addition mod 1.

Let N e N* be a fixed number and let us introduce the notation <, = 4,_,
(n=0,1,..,N), g,(x) = exp(2ri2®"x) (xeX; n= 1,2, ..., N). Then we have
Ay =y <. cofy=1%B, and the systems D, = {l,p,} (n=1,2,...,N)
obviously satisfy condition (11). The product system of the systems @, (n =1, 2, ...
---, N} is the same as the system {exp(2in):n =0, 1, ...,2¥ —1}. In this case (10)
gives an inequality of Carleson (see e.g. [2] and [4]).

Further examples and applications can be found in [7], [8] and [9].
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1. Introduction

The purpose of this paper is to discuss how well certain classes of smooth functions
can be approximated by some linear spaces of piecewise functions which include
broad classes of splines. In particular, we shall give lower bounds- which agree in
order with known upper bounds for generalized spline approximation, thus showing
that these upper bounds are asymptotically sharp.

To be more specific, let 4 = {a = x5 < x; < ... <X < X341 = b} be a
partition of the interval [a, 5]. Let U, = {m}T be a set of continuous functions
defined on the interval [a, b]. Consider

@ PUn() = {12 i = Fligyxes € P20Tn), i = 0,1, ..., K}

This is a linear space of functions which are piecewise elements in span(U,). Given
a function F defined on [a, ], we are interested in the distance

12 4(F, PUM) = _ind [IF=sll,

where ||-[]; is one of the usual g-norms, 1 < g < 0. We are especially interested
in this distance for smooth functions; for example, members of C"~![a, b] with
1 < r, or members of the Sobolev space I}, [, b] = {fe AC"[a, b]: f" e L,[a, b]}
for some 1 < p < oo.

To state our main results, we need some additional notation. As usnal, we
denote by A4 the maximum subinterval length associated with the partition 4. Given
a function fe L}[a, b], we define the usual Sobolev norm by

3 1l = 2 1 ltyte-
=0

Our main results are the following two theorems.

* Department of Mathematics and Center for Numerical Analysis, University of Texas,
Austin, Texas 78712. Supported in part by the United States Air Force Office of Scientific Research
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