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3.Let X = [0, 1], let #_, (ne N*)be the class of 2~"-periodic Borel measurable
sets of X and u the Lebesgue measure. Then %, > #_; > ... and it can easily be
proved (see e.g. [12]) that for every function fe L*(X, &, ) we have

-t

E(fi@.) =27y fetR2),
=0k

where 4 denotes the addition mod 1.

Let N e N* be a fixed number and let us introduce the notation <, = 4,_,
(n=0,1,..,N), g,(x) = exp(2ri2®"x) (xeX; n= 1,2, ..., N). Then we have
Ay =y <. cofy=1%B, and the systems D, = {l,p,} (n=1,2,...,N)
obviously satisfy condition (11). The product system of the systems @, (n =1, 2, ...
---, N} is the same as the system {exp(2in):n =0, 1, ...,2¥ —1}. In this case (10)
gives an inequality of Carleson (see e.g. [2] and [4]).

Further examples and applications can be found in [7], [8] and [9].
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LOWER BOUNDS FOR SPLINE APPROXIMATION

LARRY L. SCHUMAKER*

The University of Texas at Austin, Austin, Texas 78712, U.S.A.

1. Introduction

The purpose of this paper is to discuss how well certain classes of smooth functions
can be approximated by some linear spaces of piecewise functions which include
broad classes of splines. In particular, we shall give lower bounds- which agree in
order with known upper bounds for generalized spline approximation, thus showing
that these upper bounds are asymptotically sharp.

To be more specific, let 4 = {a = x5 < x; < ... <X < X341 = b} be a
partition of the interval [a, 5]. Let U, = {m}T be a set of continuous functions
defined on the interval [a, b]. Consider

@ PUn() = {12 i = Fligyxes € P20Tn), i = 0,1, ..., K}

This is a linear space of functions which are piecewise elements in span(U,). Given
a function F defined on [a, ], we are interested in the distance

12 4(F, PUM) = _ind [IF=sll,

where ||-[]; is one of the usual g-norms, 1 < g < 0. We are especially interested
in this distance for smooth functions; for example, members of C"~![a, b] with
1 < r, or members of the Sobolev space I}, [, b] = {fe AC"[a, b]: f" e L,[a, b]}
for some 1 < p < oo.

To state our main results, we need some additional notation. As usnal, we
denote by A4 the maximum subinterval length associated with the partition 4. Given
a function fe L}[a, b], we define the usual Sobolev norm by

3 1l = 2 1 ltyte-
=0

Our main results are the following two theorems.

* Department of Mathematics and Center for Numerical Analysis, University of Texas,
Austin, Texas 78712. Supported in part by the United States Air Force Office of Scientific Research
under grant AFOSR 74-2598B.
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THEOREM 1.1. Let 0 < r < m and suppose that U, is a Tchebycheff system.
Then, for every partition A of [a, b), there exists a function F € L [a, b] with

(14 4. (F, PUn(d)) > K (D1 Fllzz,po, 175

where

1.5 K= ( ! )' o !

a9 A VT ) M e e o e e

THEOREM 1.2. Let 0 <r<m, 1< g< o0, and 1 < p < 00. Then for every
partition A of [a, b, there exists a function F € Lj,[a, b] with

1.6 d4,(F, PUn(4)) > K )+ 1%||F|l 5y, 4,
where
an e ( 1 ) 2
) 8(m+1)] Rm+DIM2r D21+ (b—a)+ ... + (b—a)]’

Theorem 1.1 is proved in Section 2 below, along with several related results
and corollaries which show the direct relationship with upper bounds for spline
approximation. Theorem 1.2 and related results are discussed in Section 3. We
close the paper with a section containing a variety of remarks with references.

2. Lower bounds for d_,

Our approach to proving Theorem 1.1 is to explicitly construct a function F belong-
ing to L, [a, b] for which zero is the best approximation from ‘PU,.(4). A key tool
in our construction is the following lemma.

LEMMA 2.1. Let O < r. Then there exists a function g,(t) defined on [0, 1] with
the following properties:
Q1) g@) >0 for te0,1];
(2.2)  g(2) is symmetric about the point t = };

23) g0 =g"M)=0,j=0,1,...,r—1;
24 g =22 for t e 0, 13;
Q35 &)= 308" for i<t<$, r21;
26 &d=@.
Proof. Let g, = 1, and define g,(¢) inductively by
1
Sgr_1(2u)du, 0<% %,

@n &) =

t
1 1
l g,(?) -!gzgr_l(2u—1)du, F<t< L

Clea.rly, 8o satisfies the stated properties. Suppose now that gr-4 satisfies (2.1)-(2.6).
We wish to show that g, also does. First, it is clear from Definition (2.7) that g,

- ©
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is symmetric about the point 1. Since g,(0) = 0 and

. Di-'g,_,(21), t

Dia® =\ pig e, 1<

property (2.3) follows. If we carry out these differentiations, we obtain
r-1gt=D(21), 0<1<4,

D) = {—2"'1g$"1)(2t—1), p<r<l.

Now (2.4) follows from the induction hypothesis since Pl 9r=DE=2)2 - - D/2

Suppose that we write @, = g,(}). Since g is clearly monotone increasing
on [0, 3], it follows that g,(t) > @, for 1 < £ < 1. But Q; =}, while

1/4 1/4
0=\ gi@uduz | Qrrdu> 0 uf8,
0 1/8

and (2.5) follows. Finally, suppose we write C, = g+(%). Then
[k 12

1
¢ = Ve@du> {0 ydu> 0 /4,
0 114

x4

and we have proved (2.6). =
The functions constructed in this lemma are modelled after similar functions
constructed in [7], p. 134 for the purpose of establishing lower bounds on n-widths.
Proof of Theorem 1.1. Let A be a partition of [a, b], and suppose that v is chosen
so that Xy41—X, = A. Let I, denote the interval [x,, X,41]. We further subdivide
1, into m+1 equal subintervals given by

id (+n4d .
= L T =0,1,..,m.
Iv.,—[x.,+ Dy T men i m
Now, define _
. i
— X Xy
J 4 " (m+D i=0,1
8 F() = I(—1) (—m) & TNk tel;, i=0,1,..,m,
lo otherwise.

By the properties of g., we see that F e C"*[a, b] while

29 [[FO),, = 27¢-D72,

so that Fe L. [a, b]. The fact that F and each of its derivatives vanish at x, allows
us to conclude that
(2.10)

(For example,

”F”L’;D[a,b] < 2r(r—1)]2 [1+Z+ . +A—r].

t

1Fri@) < § IFO@du < A NFOl,

Xv

@11

and so forth.)
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The construction of F also implies that

. (i+1/2)Z) S (e Z_)’ -
(2.12) F(x,,+—('n—_|_l)—~ = (-1 —4(m+1) , i=0,1,..,m.
Since U, is a Tchebycheff system, we conclude from (2.12) and the well-known
theorem of de la Valleé Poussin, that

A r

(2.13) d(F, 2U,(4)) > (m) .
Combining (2.10) and (2.12) yields (1.4)—(1.5). m

In the case where the functions in U, are sufficiently differentiable, a similar
proof can be used to establish a more general result. Before stating it, we need to
agree on how to define the norms of derivatives of functions which are defined only
piecewise. If ¢ is a function whose jth derivative exists in each of the subintervals
of [a, b} defined by some partition 4, then we define

2.14) ”@G)HLm[a, 5= Olﬁiiimp(j)[l%[x:,xmb

Given 0 < j < m—1, and assuming U,, consists of sufficiently differentiable functions,
we define

(215 d;,o(F, PUn(d)) = .3 (A)HD’ F= )|z fa, 1

THEOREM 2.2. Let 0 < r < mand suppose that U, is a set of functions in C"=1 [a, B).
Suppose in addition that each of the sets V; = {Diw}I., is a Tchebycheff system
on [a, bl. Then, for every partition A of {a, b] there exists a function Fe L] [a, b]
with

2.16) G, (F, PUn)) > K; @Y Fll g0y 0< < r—1,
where
1\ 9it-1y2
2.1 K; = )
@1 I (4(m+1) 2COR+ o—a)+ ... +(—ay]"

Proof. Given 4, let F be the function defined in (2.8). We already know that
FeLlla, b]. Morcover, it also follows that FOU alternates between +|[FD||, at
least m+1 times on the interval I,. Since ¥; is a Tchebycheff system, de la Valleé
Poussin’s theorem again assures that

&, (F, PUn(A)) = |[FP|,,.
Arguing as before, we see that

(2.18) (& 4 !
. F >{— G~12jj2
Iy, (4(m+l)) 20-Dir,
Combining (2.18) with (2.10), we obtain 2.16)-(2.17). m
We should emphasize that in Theorem 2.2 the function Fis such that it and

its derivatives are all simultaneously hard to approximate. We can now state some
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immediate corollaries of Theorem 1.1 and 2.2 which will help show the connection
with upper bounds for generalized spline approximation. Given a continuous function
@, we define its usual modulus of continuity by

@.19) o(p,h) = sup o lp(x+1)—gp()].

x,x+tela,
HES

CorOLLARY 2.3. Under the hypotheses of Theorem 1.1, given any partition A of
[a, Bl, there exists a function Fe C"~[a, b] such that ||F|| ot =1 with

(2.20) o (F, PUn(4)) > @w(lﬁ"“’, 7,

where K is the constant in (1.5).
Proof. First, we observe that in view of (2.11), (1.4) implies

do(F, PUn()) > K @Y HIFl| o100,

for the function F in Theorem 1.1. Now, if we normalize this function so that
IFllzzzt0,57 = 1, and observe that

(F"=1, A) < 2[FD]|, < 2[Fllgrzigg o
we obtain (2.20). m
Similarly, we may establish
COROLLARY 2.4. Under the hypotheses of Theorem 2.2, given any partition A
of [a, b), there exists a function F € L [a, b] such that ||F|| 3t = 1 and

@2y d,o(F, PUL ) > X y-1-Tw(Ee->, D),

Jorallj=0,1,...,r—1, where K; is the constant in (2.17).

‘We now may compare Corollary 2.4 with results in [4] concerning estimates
on approximation with a class of generalized splines. In particular, in [4] the class
of splines
222) FUpA;4) = {5:5;= s![xhxm]

AySieg = sy, j=1,2, ..,my, i=1,2, ..., k}
was considered, where U, was assumed to be the set of fundamental solutions assoc-

m-1

iated with a mth-order linear differential operator L = D"+ Y. a;D/ with coeffi-
j=o

€Uy, i=0,1,...,m and

cients a; € C™[a, b], and where A = {l;j = m}:l oci,,,e;"}}?;’{f,-=1 is a set of Extended~
Hermite-Birkhoff linear functionals. =
This set of generalized splines is, of course, a subset of 2 U,,(4). This implies
&, (F> &) 2 dj,o(F, PUn(d)),
so the lower bounds in this section are also valid for &. Now, we may observe that

the lower bound in (2.22) is an exact match (with a different constant, of course)
for an upper bound established in Theorem 2.1 of [4] for the class of splines 5.
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3. Lower bounds for d, with 1 < g < co

In this section we shall establish Theorem 1.2 and related results. To prove Theorem
1.2 we shall explicitly construct a function Fe Lj[a, 8] for which zero is the best
approximation from 2U,(4), and thus

G.D dy(F, PUn(D)) 2 |IFl|Lge,t1-

In this case, however, we do not have the usual alternation theorem at our disposal
to characterize best approximations. In its place we have the fact that u* e span(U,)
is a best approximation of F in the g-norm on an interval [c, d] if and and only if
d
32) S]F—u*l““sgn(F-u*)udt =0, all uespan(U,).
. .

Thus, we are seeking F satisfying

Xp41
3.3) { ip-tsm®udi =0, i=1,2,.,m 2=0,1,..,k

Xy
The construction in this case is by no means as easy as in the uniform norm case.
The main tool will be the following generalization of a result of Hobby and Rice
B3

Lemma 3.1, Let {u;}7 be a set of m linearly independent functions in L,[c, d],

and let 0, ¢ & C[0,1]. Then there exist points ¢ =ty < 4, < ... S lypy; = d and
SIgNS £y, ..., &m Such that the function

t—1; .
34 G(t)=5i9(ti+1—ti)¢(7l:1_—t_), L<t<tyy,i=0,1,..,m
satisfies
d
(3.5) {6u@ya =0, i=1,2,..,m.

Proof. Let § = {£ = (b0, &1, o> &) €R™*: 3 |6 = d—c]. For each €5,

define ©; = c+|&{+ 181l + .. +1&i—yl, i=1,2,...,m, and

Sgn(fo)'ﬁ(iEoI)QJ(i];o—‘c), c<IS Ty,

G;(I) — Sgn(SI)'G({ElD‘P(t[—EITI‘), T, £t K 15,

SEn(Em)e(lsm])‘p(t;TIm), Tm ST d.

Now define a function p: S » R™ < R™+1 by
d

@l = Gymtydr, i=1,2,..,m.

c

©
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Clearly, y is continuous on S, and is odd; i.e. (&)= —y(—&). Since S is the bound-
ary of an open, bounded, symmetric set in R™** and y(S) is contained in the proper
subspace R™ of R™*+1, it follows from Corollary 3.29 in [12], p. 81 that v must take
on the value 0 for some é* € S. Wemay take t; = 7¥,i=1,2,...,m. o

The original Hobby-Rice result corresponds to the special case where 6 = ¢ = 1.
The proof in [3] is quite difficult. Here we have followed the much simpler proof
of the Hobby—Rice result recently discovered by Allan Pinkus [9]. Our extension
may be of interest in its own right.

Proof of Theorem 1.2. Let A4 be a partition of [a, b], and let o be such that
Xpp1—Xp = A. Choose ¢ =, d=X,4q, 0¢) =Y, and @) = |g ()¢
in Lemma 3.1. By the lemma we know there exist x, = #, < f; < ... € fnp1 = Xp41
and signs &, ..., & such that the function

r -1
36 F@) = 8"“"“‘”‘)5”( f—ts
0 otherwise

satisfies (3.3). We conclude that 0 is the best approximation of F from #Un(4);
ie., (3.1) holds.

To estimate ||Fi|, from below, we note that at least one of the intervals 1,;
= [t, t;+,] must be of length at least AJ(m+1). Moreover, on the middle one-half
of this interval, call it I%, [F(t)| > 2(4/8(n+1))". Hence,

), << tyr, J=0,1,...,m,

A e 1/q A r A 1/q
an e ({blagrrn)[4) > 2] fwen)
On the other hand, l.: is clearly in L}[a, b], and in fact,

69 IFON, < (§2e-ora)” = Zurye-vr,
Now, ’

} 3
Fe-o() = |[Fo@ad < 17y, 2%,
so ’ ’

(§iFe-spar)” < iFoy, 4487 = AFO,.

Iv

Since the lower derivatives can also be estimated in this way, we obtain

39 Pl 5 < AVP2CDR[14 A4 .. +47].

Combining (3.9) with (3.1) and (3.7) yields (1.8)-(1.9). =
We can also give a result concerning derivatives. If ¢ is defined piecewise on
a partition 4 and is sufficiently differentiable on each subinterval, we define

k
. 1/a
9Pl o = [ (0Pl casnzend?] -
v=0
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Suppose d;,;(F, #Un(4)) is defined as in (2.15) when the elements of 2U,,(4) are
sufficiently smooth piecewise

TaeoREM 3.2. Let 0 < r < m and suppose that the set U, < C"'[a, b]. Fix
0<j<r—1, and suppose that the set V= {Du}lu, = {op}ici is a set of
m—j linearly independent functions on [a, b]. Then for every partition A of [a, b]
there exists a function F e Lj[a, b] with .

(3.10) .o (F, PUn()) > K; (Y5418 202||F|| g 1,
where
611 k= 1 )r_j 2
) 1= \8n+1)]  [RAm+ DIV =O2[1+ (b—a)+ ... +(-ay]’

Proof. Let 4 be a partition of [, b], and let v be such that x,,,—x, = 4. In
Lemma 3.1 let ¢ = x,, d = Xpyq, 0@F) = D@D, and @) = |g,_;()~1. By
the lemma, there exist x, = #y < #; < ... < fyy1 = X441 and signs &, ..., &, such
that the function

&t —t)"fg_(———t_ti ) L<t<ty, i=0,1,..,m
h(t) = i+1 i r—j ti+1—ti > i =X 41 s dy eeey s
0 otherwise,
satisfies

Xpg1

@12 § @ tsenB®)m)dt =0, i=1,2,..,m—j, v =0,1,..,m.

Now let

tuy o owply

(3.13) Foy=§§ ... | nwydy ... du,

XX A
Clearly, Fe Lja, b] and

[|[F®||, < 20=De=i=Di2 g1,
so that
(3.19 F g0, 5y < 20-DE—i=DRAUP L4 A+ .. +47).
On the other hand, in view of (3.12),
@15 4 (F, U (D) = d,(FO, 2V;(4))

LT r—j Z 1/q
~at.9v,)3 > 2 g} (o)

Combining (3.13) and (3.14) yields (3.10)-(3.11). m
The result of Theorem 3.2 is not quite as strong as that in Theorem 2.2 inasmuch
as there a single function worked for all 0 < j < r—1. Here it is not clear how to
construct a function F whose derivatives F& are simultaneously hard to approximate
from the spaces ¥;. We can now state corollaries of Theorems 1.2 and 3.2 which
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give lower bounds in terms of p-moduli of continuity. If ¢ & L,[a, b], we define
1/p
olg, ), = sup({ o+ -0 dx)
where the integral is taken over only those x such that x and x -+ are both in [a, B].
(An alternate definition allows the integral to be defined over all of [a, ], but the
function is first extended to a slightly larger interval, see [2], [6].)

COROLLARY 3.3. Under the hypotheses of Theorem 1.2, given any partition 4 of
[a, B), there exists a fimction F € Lj[a, b] such that [|F|| pa,n = 1 and

(316 44(F, PU) > 5 @+ (F, D),

where K is the constant in (1.7).

Proof. If the function F in the proof of Theorem 1.2 is normalized so that
Fll g, = 1, then (1.6)-(1.7) coupled with the fact that w(F®, A), < 2){FO|,
yields (3.16). =

Similarly, we may establish

COROLLARY 3.4. Under the hypotheses of Theorem 3.2, given any partition A of
[a, b}, there exists a function F e L}[a, b] such that ||F|| Lo, = 1 and

@17 d;.o(F, PUn(d)) > = X (@y-1+1=1r gy (FO, ),

where Ifj is the constant in (3.11).

The result of Corollary 3.4 may now be compared with upper bounds on approxi-
mation of functions in Lj[a, 5] by splines in the class & defined in (2.22). Since
F < PUn(4), (3.17) implies

(318) dj_q(F, y) > !_;i(Z)r——,H 1/4—1[?60(1:(?), Z)p

For 1< p < g < oo this compares exactly with the upper bounds established in
Theorem 2.3 of [4]. For 1 < g < p < co, the upper estimate in Theorem 2.3 of [4]
is of order (4 ), while the lower bound in (3.18) s of the smaller order (4 )~/ +1/a-1/p,
It would be desirable to show that there is a corresponding lower bound for this
second case. The following theorem gives a lower bound of the correct order r—j,
but in terms of the quantity 4 = omink (%141 —x;) instead of 4.

<i<

THEOREM 3.5. Let 0 < r<m,0< j<r=1,1 < p< 0, and 1 < g < 0. Then
for every partition A of [a, b), there exists a fimction F € Ly[a, b] with

B.19)  d; o(F, PUn(D) = KHAYIFl|ypa, 0 > —QL(A)"’CO(F"’ Ay,

where
b—a "
1\ 2 2(m+1)
* =
G20 X (S(m-l-l)) B—a)/P2r-De—i-D2[1 4 (b~a)+ ... +(b—a)]’
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Proof. Let A = {a = xo < %; < ... < X413 = b} be a partition of [a, b]. For
everyo = 0,1, ...,k letx, = t§? < 1’ < ... < )1 = X,4; and signs &P, ..., ¢®
be such that o

h(z) = et — 1), oy

=& e L) 8- o —w )
J+17T 0

<<y, j=0,1,..,mandv=0,1,..,k

satisfies (3.12). Let F be defined as in (3.13). Now for each @, let j, be chosen so
that |I,; | > |L}/(n+1). Let I} denote the middle one-half of the interval L,; . Then
(f. (3.15) ’
B2 4o (F, PULD) = IAl],

k

> 2(%3)(2 ,S) - 2( 8<m4+ ) )r—](zgn_fl) )/

v=0

Moreover,

(322) [IFO|, < 2(r—j)("—i—1)/2(2 S)l/p = 20-De-i=1i2(p_ g)ve,
I

Thus, F e L} [a, b], and converting (3.22) to an estimate on the L}, norm in the same
way as before, we obtain (3.19)-(3.20). =

4. Remarks

I we take U, = {x'~1}7, we recover known results on piecewise polynomial
aPprox1mation (cf. [1], [2], [5], [10], [13], [14]). Our approach is, however, completely
different from that taken in these papers inasmuch as for general U,, we do not have
px+1) e Uy, whenever p(x) e U,, (which, of course, does hold for polynomials).
We also note that we have obtained explicit constants which are new even for the
polynomial case.

(?f) The constants in the theorems of this paper are not best possible. They can
be easily improved, for example, by obtaining Better estimates for ||g/l| in the norms
of interest.

' (3 Lower bounds for d;, (F, #Un(d)) similar to those in (2.21), but with
4 instead of 4, were established in [4] using results from the theory of n-widths.
Corollary 2.4 is thus a significant improvement as it shows that the upper bounds
are asymptotically optimal for all partitions, not just quasiuniform ones.

) (4) Corollary 3.4 extends and improves the lower bound in Theorem 1.3 of
[4] in two ways. First, we have 4 here instead of 4, and moreover, the result is valid
for all 1 < p < ¢ < oo (whereas in [4], the result was established only for p = g).
Tl:‘worem 3.5 provides the associated lower bounds for 1 < g <p < oo, so that in
this case the upper bounds in Theorem 1.3 of [4] are asymptotically slz’tarp for all
quasiuniform meshes;; i.e. meshes with A74 < const. < oo, Itremains an open question
as to whether a bound of the form (3.19) can be established using 4 instead of 4.
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(5) It is quite easy to obtain further corollaries of the results of this paper giving
lower bounds in terms of higher-order moduli of continuity. For example, if we

define
oulp, )= sup [Alp(x),
x,x+ntela,b]
lti<h
then we may use the fact (cf. [6]) that
wnlp, ) < Bw(p®, b)

to obtain lower bounds involving w,(F, A ). The same can be done for an nth-order
modulus of continuity with respect to the p-norm.

(6) In this paper we have concentrated on actual lower bounds. There is also
an inverse theory for generalized spline approximation; e.g. see [10], [15].
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