icm
APPROXIMATION THEORY

BANACH CENTER PUBLICATIONS, VOLUME 4
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1979

COMPARATIVE APPROXIMATION IN TWO TOPOLOGIES

H. S. SHAPIRO
The Royal Institute of Technology, Department of Mathematics, S-10044 Stockholm 70, Sweden

1. Introduction

This paper is a preliminary exploration of an approximation problem which can be
roughly described as follows. Suppose a linear manifold E of functions spans a func-
tion fin some “weak” topology. Must E span fin a “strong” topology? In general
the answer is of course no, but we shall show that if E consists of linear combinations
of exponential functions, then (putting the matter very vaguely, and with gross over-
simplification) if E spans f in some topology, however weak, it does so in the strong-
est topology which is meaningful for f.

To be more specific, let X and ¥ denote topological linear spaces, and E a linear
manifold in XnY. We shall assume that X is a subset of Y, the X topology being
stronger than the Y topology, although the problem to be studied is meaningful when-
ever the topologies which X and Y induce in E are non-equivalent. We shall say E
is an (X, Y) manifold if, whenever x € XnY lies in the Y-closure of E, x also lies
in the X-closure of E.

It is well first to enumerate certain trivial aspects of our problem:

(@) If E is dense in ¥ but not in X (in their respective topologies), it is not an
(X, Y) manifold.

(ExaMpLE: X = C(I), Y = L'(I), I = [0, 1], and E is the set of polynomials p
such that p(0) = 0.)

(i) If Eis dense in X, it is (trivially) an (X, ¥) manifold.

(i) If X, ¥ are Banach spaces, and the X and Y norms are equivalent on E
(in particular, if E is finite-dimensional), then E is an (X, Y) manifold.

(EXAMPLE: E consists of all finite linear combinations of Rademacher functions,
X=1*D), Y=L'{))

In connection with (jii), one might hastily surmise that our problem is essentially
that of finding linear manifolds E on which the X and Y topologies are equivalent,
but this is by no means the case, as we shall see from examples later.

Because of considerations (i) and (ii), we can hereafter restrict attention to the
case where E is not dense in either of the spaces X, Y.
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2. An example

To see what sort of concrete problems our general point of view may lead to, let A
be a compact subset of R, and E the set of finite linear combinations of exponential
functions e,: t — ¥, t € R where 1 € 2. Let X denote the Banach space of bounded
uniformly continuous (complex-valued) functions on R, endowed with the usual
supremum norm. Let ¥ denote L2(R) endowed with its weak* topology. Let fe X
and suppose f belongs to the Y-closure of E; must it belong to the X-closure of E?
We have a bounded uniformly continuous function f on R, and the assumption
that fis in the Y-closure of E implies that its spectrum (in the sense that is customary
when dealing with L, namely the support of its distributional Fourier transform)
is contained in A. Must f be in the uniform closure of E? Our problem thus takes
the form: if a bounded uniformly continuous function on R has its spectrum in the
compact set A, must it be Bohr almost-periodic? The answer is known to be yes if
A is at most countable; if, on the other hand, A has a perfect subset, it supports
a nondiscrete bounded measure and the answer is no.

3

Let us fix a subset A of integers, and let E be the set of all finite linear combinations
of the functions e,: t — ™, t e T where n e A. (As usual, T denotes the “circle”
R[2mZ) To fix ideas, we consider two specific topologies; our “weak” topology is
that of ¥ = LY(T), our “strong™ topology is that of X = C(T"), but we shall see
from the following argument that the final result is nearly insensitive to how strong
the “strong” topology is, and how weak the “weak” topology is. Let us prove:

Let e C(T), and suppose [ is spanned by E in L*(T). Then f is spanned by E in
C(T); in other words E is a (C, L*) manifold for every choice of A. .

Proof. Let u be a measure on T such that § e du(z) = 0, n e 4. We have
to show S fdu = 0. Now let o, denote the Fejér mean of p of order m. Then clearly
S ™o, (t)dt = 0 for n € A and so, since 0, € L°(T) and we have assumed that fis
in the L! closure of E, we have S om(t) f(t)dt = 0. But o, dt tends to p in the weak*®
topology of M(T); hence S fdu = 0, as was to be shown.

4

Now we wish to look at something a little more interesting, namely the case where
our functions are defined on R* and E is spanned by exponentials e=%, 1 € 4 where
A is some subset of the right half plane. Actually, to make certain technical matters
a little simpler, we prefer to have our exponential functions defined on the set N of
non-negative integers rather than R*, that is, we fix a subset A of the open unit disc
and let E be the set of finite linear combinations of the vectors

1,2,2%,..), lied.
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Moreover, it is technically more convenient to work not with these vectors
directly, but with their Laplace transforms

1
1—- 2z

o0
@1 k(D) = Y A2 =
n=0
considered as analytic functions on the open unit disc U. (Of course, some norms
which seem “natural” for functions on N (such as /) will seem “sophisticated” as
applied to their Laplace transforms, and vice versa, but from a logical point of view
the problems are the same.)
Our first choice of topologies will be this: Y is the Hardy space H*(U), and X
the Hardy space H?(U), where 1 < p < co.
PROPOSITION. Let A be any subset of U, and E = E 4 the set of all functions k;
defined by (4.1), where A € A. Then E is an (H?, H") manifold for everyp, 1 < p < 0.
Proof. Assume that fe H” is in the H* closure of E. We must show it is in the
HP? closure as well. Without loss of generality we may assume that A = {1,}%,
is countable and satisfies the Blaschke condition

D (=14 < o,

since otherwise E is dense in H?, in H? norm, and the problem trivializes. Now, let
@ € LY(T) where ¢ = p/(p—1) and suppose

“2)

led.

ZS" (1G]

1— e 4 =0,
b

43)

If we can show
2

{ e ey =0,

0

44
we shall have proved the proposition by duality. Let

T ()
) = S 19"_;6“,
o

e dp.

Then by virtue of a theorem of M. Riesz, g € H?. Moreover, g(1) = 0 for 1 € A.
Thus, g = Bh where B is the Blaschke product formed with zeroes {4,} (convergent
because of (4.2)) and h € H4. To establish (4.4) we must show

2

S B(e~ ) h(e ) f(e®)db.

)

Now, we see that (4.4) holds for any ¢ € L*(T) which satisfies (4.3), and in particular
this is the case if @ has the form g(e~°%) = B(e~ %) ¥ (e~®), where ¥ e H*(T"). Hence
the proof will be complete if we can make the H? norm of BA—BY¥ as small as
desired. But this is certainly possible since H* is dense in H?, and the proof is finished.

@5
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Remarks. If, in the capacity of X in the above problem we had taken C(T)
rather than H? (or, what comes to the same, X = H*nC, the “disc algebra™), we
would have an apparently more difficult problem and one which thus far I cannot
solve. A similar difficulty arises if we take X to be L® (or equivalently, H*) endowed
with the weak* topology of L*(T). On the other hand, for another X “near” to H=,
pamely the set of functions analytic in U with a finite Dirichlet integral, we shall
give a positive solution to the problem in the following section.

Another example where a seemingly more difficult problem arises is if, in the
above analysis, we try to replace H' by a weaker topology, e.g. the “Bergman space”
I2(U) of square integrable analytic functions on U (more discussion about this
space will be given in the next chapter). Then the proof we gave for the above prop-
osition breaks down because, with the pairing we have used between spaces and
their duals, an element of L®, éven one of the special form BY¥ used above, does not
define a bounded linear functional on L2(U). Indeed, the proposition is false as it
stands, since even when condition (4.2) holds, it may happen that E, is dense
in L2(U), or, what is equivalent, that no non-null analytic function with a finite
Dirichlet integral can vanish at all the points {4,}. Thus, we have first of all to modify
(4.2) to read: E, is not dense in L2(U). Whether the proposition thus modified is
true, I do not know. Another similar problem is to replace H* by H? withp < 1.

5

Let us continue along the lines of the preceding section. Suppose we took for X
a topology stronger than all the H” topologies with p < o, for example the D norm
(Dirichlet integral) where

lighi3 = inlbnlz &= ib,,z'o
[1]

n=1
or an even much stronger topology (H? norm of the derivative):

o0
gz = > bl
n=1
In both of these cases (keeping H* as our “weak”, or Y topology) one can show
that our problem has a positive answer, that is, E, is an (X, Y) manifold if A satisfies
#.2).
Let us consider, for example, the D norm, or (what is essentially the same,

but a bit more convenient for our purposes) the D’ norm, whose square is
o0

3 (+1)(B,)2. The dual space of D’ is identified, in a natural way, with the space

n=0
LZ(U) of square-summable analytic functions on U. (That is, the bilinear form which

o o0
expresses the duality between f = ;a,,z" eLZ(U) and g= Y b,z7e D’ is (f,8)
0
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o
= Za,, b,.) Repeating the reasoning in Section 4, we see that to prove our assertion
0

we need only to establish:

PROPOSITION. If g € L2(U) vanishes on the zeroes of a given Blaschke product
B(2) (i.e. g/B is analytic in U), then, for every & > 0, we can find ¥ ¢ H*(U) such that
WB—g has L*(U)-norm less than e.

Remark. In a paper in Mat. Sbornik 73 (1967) I claimed (in the remark follow-
ing Theorem 7) to be in possession of a counterexample to the above proposition.
That claim, it now appears, was mistaken. The proof of the above proposition was
pointed out to me by Lennart Carleson. This proof is, in fact, valid in considerable
generality and thus solves a large class of instances of our basic approximation
problem, which we do not bother to formulate explicitly.

Let us consider a Banach space S of analytic functions in U satisfying the follow-
ing conditions:

(a) Polynomials are dense in S.

(b) For each ¢ € H*, multiplication by ¢ is a bounded operator on S.
1-2z
z—2

(d) (Dominated convergence). If £, € S, f,(z) — 0 for each z € U and moreover,
for some g e S,

(© Iffe S, AeU, and f(4) = 0, the function

-f(@)isin S.

1@ < g, allzeUand all n,
then || fxlls — 0.

Obviously, if u is any positive bounded measure on U, the space of all functions
analytic in U such that S | fIPdu < oo satisfies the preceding conditions. In par-

ticular, this is the case for L2(U).

PROPOSITION. Let S be a Banach space of analytic functions in U such that (a),
(b), (¢), (d) above hold. Suppose B is a Blaschke product, g € S and g[B is holomorphic
in U. Then there exist polynomials P, such that

Lim ||P,B—glls = 0.

Proof. Write B = B,,R,, where B,, is the partial product consisting of the first
m factors of B. Because of (c), g/B, is in S for every m. Now, given & > 0, we can
(by virtue of (d)) choose m so large that [|[R,g—gl|| < £/2, since R,(z)g(z)—g(2)
tends to zero for each z and is majorized by 2|g(z)|- Because of (a), we can now find
a polynomial P such that
[1P—(g/Bmll < &/2M,

where M is the norm of the operator /' — Bf. Hence, because of (b)

|IPB—R,gl|| < /2.
Thus, {{PB—g]| < &, and the proposition is proved.
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6. Concluding remarks

6.1. A variant of the problems in Sections 4 and 5 arises if for the “strong” topology
we choose a space X for which the failure of condition (4.2) does not necessarily
force E4 to be dense in X, in other words sets 4 with Z (1—12]) = oo must be taken
into account. Then the use of Blaschke products is no longer possible, and we are
led to what appear to be new and difficult problems. If, for instance, we choose
Y = D and for X some space with a stronger topology, we fall into this situation.

6.2. Thus far, I know no example where E, fails to be an (X, ¥) manifold, except
in the trivial way that it spans ¥ but not X.

6.3. One should observe that a number of interesting topological spaces of ana-
Iytic functions in U (for instance, H” with p < 1) contain k; even for |A] = 1, so for
these spaces the natural condition on /1 is that it is a subset of the closed unit disc.

6.4. To summarize somewhat the situation after Sections 4 and 5, we may put
matters as follows. Be means of a duality argument, we arrive at two topological
vector spaces (say, for simplicity, Banach spaces) X", ¥’ of analytic functions in U.

‘We are given moreover a subset A of U such that both X" and ¥* contain non-null
functions which vanish on 4. Let g € ¥, g(z) = 0 for all z e /. Is there then some
function /€ X' which vanishes on 4 and is within ¢ of g, with respect to the ¥’
norm? This problem is of interest in its own right, and could itself be taken as the
starting point of the investigation. The essence of what was done in Sections 4 and 5
is that when A satisfies (4.2), and X” contains all Blaschke products, we obtain a posi-
tive answer, insofar as the closure of the polynomial multiples of a given Blaschke
product in a vast array of spaces Y' contains all functions in ¥’ which vanish on 4.
Blaschke products are of course specially attuned to H? spaces and our problem is,
in a sense, to find what kind of functions may replace them in other situations.
Observe that, for instance, in the proof of the Proposition of Section 4, it was not
essential that B was a Blaschke product. It would have been enough to take for B
any outer function. vanishing on {A,}. However, if we had chosen some B with
a singular inner factor, the proof would not work, insofar as polynomial (or H*)
multiples of B would then not span all functions in H? vanishing on {4,}. When
dealing with a space Y’ where the usual notion of “inner-outer factorization” is not
applicable, we have to search for something to replace it, and this in my opinion
is what gives theoretical interest to the present problem.

6.5. Of course, these considerations apply also to (say) spaces of entire functions.
Looking only at the dual problem, we have (recapitulating) the following situation.
Let X", ¥” be two t.v. spaces of entire functions; say for simplicity ¥ < X', and let
4 be a set of multiplicity for Y, i.e. the set ¥'(4) of non-null functions vanishing
on A is not empty. Our problem is, does the X’ closure of Y'(A) contain all functions
in X” which vanish on A4?

A closely related problem was studied by Newman and Shapiro [1], [2] in the

concrete situation where X’ was the “Fischer space” F of all entire functions g such
that
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o0 o0

{0 1gCetiee M dxdy < .

—00 —00

Indeed, the principal problem in [1], [2], was, do the polynomial multiples of an
entire function o span (in F) all functions which vanish wherever @ vanishes? (Here
we assume, of course, that @ is such that its polynomial multiples lie.in F, which is
certainly the case if ¢ has order less than 2.) Thus far, no example of a function g is
known for which this problem has a negative answer. On the other hand, we cannot
assert (on the basis of what is known) that for every ¢ of exponential type (say),
or in any other “typical” space of entire functions, the problem has an affirmative
answer. In the present paper we are asking for somewhat less, i.e. a problem of the
sort: does the set of all entire functions of exponential type which vanish on A span
(in F) every function vanishing on A?

Comparing these two problems, another problem naturally suggests itself,
which in its general formulation reads: is the X'-closure of Y'(A) identical with the
X'-closure of the set of all polynomial multiples of some single function in ¥'(A)?
Usually, this problem is non-trivial even when X' = Y'. Then it takes the form:
is there a “canonical” function associated with the set (of multiplicity) A, such that
the closure of its polynomial multiples consists of all functions vanishing on A? For H?
spaces we have a positive answer, thanks to the theory of Blaschke products.

6.6. We add two more examples which may serve to show the wide range of
problems concerning “(X, Y) manifolds”, and further demonstrate its fundamental
character. ’ )

First, the “spectral synthesis” problem of harmonic analysis: here X = A(T),
Y = C(T) and E is an (algebraic) ideal of functions in A(T). Then, fe A(T) is in
the Y-closure of E if and only if it vanishes on the compact set K(E), the set of com-
mon zeroes of all functions in E. Thus, E is an (X, ¥) manifold if and only if K(E)
is a set of synthesis.

This can also be put in a slightly different way: with X, Y as before, let K be
some compact set, and E the set of functions in A(T) which vanish on an open
neighbourhood of K. Then the Y-closure of E is the set of all continuous functions
vanishing on X, and so E is an (X, ¥) manifold if and only if K is a set of synthesis.

Second, it is amusing to observe (Y. Katznelson called my attention to this
point) that our problem has an affirmative answer when X is a Banach space (with
its strong topology) and Y the same space, endowed with its weak topology (no
matter what the linear manifold E is like). This is a corollary of the Hahn-Banach
theorem.

6.7. As remarked in the Introduction, the present paper is to be understood
in the spirit of a preliminary sketch, the first goal of which ought to be a correct
formulation of the underlying problems in the right degree of generality. For this
purpose, observe that the example in Section 3 can be formulated without mention
of exponential functions. We can, instead, postulate E to be any translation-invariant
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linear manifold of functions in C(T'). The above argument establishes that the clos-
ure of E in C(T) equals the intersection with C(T') of the closure of E in L!(T).

Thus the essential feature of E is the invariance of its elements under rotations
of T. In like manner, the example in Section 4 can be generalized, replacing E by
any linear manifold in H? invariant with respect to the backward shift operator,
that is the operator

V: (ag, a5, az, ...) = (ag, az, ...)
acting on the Taylor coefficients.

Thus, we might hope for a theorem of some generality in which X and Y are
topological spaces of functions defined on some semigroup S, and E < X is assumed
invariant with respect to some transformation(s) of S. However, I could not so far
even extend the example in Section 5 in this spirit. The problem here is: Suppose E
is a linear manifold in (say) H*(U), VE < E, and E is not dense in L2(U). Is E an
(H2(U), LXU)) manifold? (That is: does the L2 closure of E, intersected with H?2,
equal the H? closure of E?) I would guess the answer is affirmative. This is a crucial
test problem for ascertaining whether or not a theorem of some generality ultimately
can be hoped for.
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A COUNTEREXAMPLE IN HARMONIC ANALYSIS
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Let B be a commutative Banach algebra with identity, and suppose x € B has norm
1 and satisfies
0)) ¥m)l> >0, almeM
where % denotes the Gelfand transform of x, and M the maximal ideal space of B.
Then x is invertible; Gunnar Ehrling has raised the question, in connection with
a problem arising in theoretical physics, whether there exists a constant N(B; 6)
depending only on B and § such that |Ix~1]] < N(B; 0) for all x e B satisfying (1)

In this note we show that the answer is no in the case where B is the algebra
of absolutely convergent Taylor series. More precisely: let 4 denote the Banach
algebra of functions f analytic on the open unit disc U whose series of Taylor co-
efficients is absolutely convergent:

o0

M=) a Ifl= fj laa] < o0
n=0

n=0
with multiplication in 4 defined as the usual pointwise multiplication of functions
of U. The maximal ideal space of A is the closure U~ of U. We shall denote
matllx | f@)] by || fllo- Our result is, then:
zeU~

THEOREM. There exists a sequence {f,}? < A and a positive absolute constant
8 such that

OIAl=Lnrn=1,2,..,
i 1@ =26, n=1,2,..;2zeU",
(iii) lim || £ = oo.
n-00
It will be convenient to precede the proof by some lemmas.
LeEMMA 1. For fe A we have

b
1
@ 171 < 1FO+5 | 17 Eab.
[}
Proof. This is a classical inequality of Hardy and Littlewood. (See [2], vol. I,
p- 286, Theorem (8.7).) . :

[233]


GUEST




