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However, this method and that in Remark 4 resort to ideas rather deeper than are
needed for the problem, so perhaps the simple counterexample of the present note,
the need for which was suggested by Ehrling, is not altogether superfluous.
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We recall that if E is a Banach space, a (countable) biorthogonal system (xa,f»)
in (E, E*) is called an M-basis (Markushevich basis) for E if {x,} is complete in E
(i.e., the closed linear span[x,] of {x,} is E, so E must be separable) and {fr} is
total over E (ie., {xeE| fi(x) =0 (n=1,2,...)} = {0}); it is well known that
M-basis exist in every separable space E. Following M. 1. Kadec [7], an M-basis
(%a, fo) is called a generalized summation basis (g.s.b.) for E, if there exists a sequence
{t,} of linear operators with #,: [xIf —» [x]i (z=1,2, ...), such that x =
n ‘
lim t,5,(x), for all x € E, where s,(x) = Zlf,-(x)xi (xeEn=1,2,..). A separ-
=

n—coo

able Banach space E is said to have the bounded approximation property (b.a.p.),

if there exists on E a sequence of continuous linear operators {u,} of finite rank

(i.e., dim u,(E) < 00), such that x = lim u,(x), for all x & E. Thus, if Ehasa gs.b.,
n- 0

then E is separable and has the b.a.p.; W. B. Johnson has proved that the converse
is also true ([5], Theorem IV.1).

M. L. Kadec has shown ([7], Theorem 4) that if a reflexive space E has a g.s.b.,
then every M-basis for E is a g.s.b. By the above-mentioned result of Johnson, this
is equivalent to the fact that, in a separable reflexive space E with the b.a.p., every
M-basis for E is a g.s.b. ({51, Corollary IV.2). Therefore it is natural to raise the
problem of characterizing the (separable) Banach spaces E with this property. of
course, a necessary condition is that such a space E must have the b.a.p. Fur-
thermore, another necessary condition is that E must be quasi-reflexive (i.e., dim
E**|z(E) < oo, where «u: E — E** is the canonical isometrical embedding); indeed,
for every separable non-quasi reflexive space E, the dual E* contains a separable
total subspace ¥ of characteristic zero [2], and then E has an M-basis (x,, fr) With
[f,] = ¥ (see e.g. [S], Theorem IIL1), but, as was observed by Kadec ([7], Theorem
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238 1. SINGER
3 and [4], Theorem 2), such an M-basis is not a g.s.b. We shall prove that these
two conditions are also sufficient.

Lemma 1 (W. B. Johnson [6], Lemma 1). Let V, G be two Banach spaces, where
dimG < oo and let I" be a subspace of V* with dim I' < co. Then, for every conti-
nuous linear operator #: V* — G and every & > 0, there exists a w*-continuous linear
operator 9: V* ~ G such that

®
@

77[1* = ﬁ|r,
18Il < [lul]+e.
Using this lemma, we shall prove
LEMMA 2, Let E be a quasi-reflexive Banach space, G a finite-dimensional subspace
of E and V a total closed linear subspace of E*. Then, for every continuous linear

operator u: E — G, there exists a o(E, V)-continuous linear operator v: E — G such
that
©)] vl = tde,
@ [loll < Cllul],
where C is a constant which does not depend on dim G. ‘
Proof. If dim E**/n(E) =n < oo, then, by [8], Lemma 4, we have 0
< codimg.V = k < nand codimg.(z(E)® V1) = n—k. The latter equality implies,
by [8], proof of Theorem 1 (implication 2° => 3°), that codimy.@(E) = n—k, where
¢ denotes the canonical mapping of E into V*, defined by p(x)(f) = f(x) (x€E,
f€¥);note that since codimg. ¥ < 0, the characteristic r(¥) of ¥'is > 0 and hence
@ is an isomorphism with [jp~{| < 1/r(¥) (see [3]). Let p be any continuous linear
projection of V* onto @(E). If u: E — G is a continuous linear operator, define
@ V* > Gby & =up~'p. By Lemma 1 above, with I' = ¢(G) = V*,for0 < ¢
< |[i], there exists a w*-continuous linear operator $: ¥* - G such that

©) ?(p0)) = #(p()) = up~'p(p(»))
=up~lp() =u(y) (el),
® 191 < 111+ < 2011 < 2lig=]l1pll llull < %uun.

Now define v: E -~ G by v = . Then, since 9 is o(V'*, ¥)-continuous, v is
o(E, V)-continuous. Also, by (5) we have (3) and by (6) and ||p|| < 1, we have (4)
with C = 2[[pli/r(¥), which completes the proof.

LemMA 3. Let E be a separable quasi-reflexive Banach space with the b.a.p. and
let V be a total closed linear subspace of E*. Then there exists on E a sequence of
continuous linear operators {v,} of finite rank, such that

@) X = limo,(x) (xeE),
® U ot < 7.
n=1
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Proof. By our assumption, there exists a sequence of continuous linear oper-
ators {u,} of finiterank, such that x = lim #,(x) (x € E), whence sup|lus|| = 1 < oo;
n—o0 n

since this convergence is uniform on compact subsets of E, we may assume (by
passing to a subsequence of {u,}) that

n—-1
© @l <lisl - Ge[Uu®], n=2,3,..).

By Lemma 2 (with G = G, = [Ln) wi(E)]), for each n = 1,2, ... there exists
a o(E, V)-continuous linear operator ';,,1 : E— G, such that
(10) Vnlew = thla, (1 =1,2,..),
an loall € Clluall € CA< 0 (m=1,2,..),
where C and A do not depend on n. Then, from (9) and (10) it follows that x
= limo,(x) (x engl tn(E)), whence, by (11) and since "l::J‘ un(E) is dense in E,

n-c0

we obtain (7). Finally, since v, is o(E, V)-continuous, we can write @,(x) =

S EP(x) ™, where {y}7= is a basis of G, and {K{™} = V. But then v}(/)
=1

=2 fOMHP eV (feE¥), which proves (8).
b=

THEOREM. For a separable Banach space E the following statements are equivalent:

(1) Every M-basis for E is a g.s.b.

(2) E is quasi-reflexive and has the b.a.p.

Proof. The implication (1) = (2) was observed before Lemma 1 above.

Conversely, assume that we have (2). From [5], proof of Theorem IV. 1, it
follows that if {v,} is a sequence of continuous linear operators of finite rank on E,

oo
satisfying (7), then every M-basis (x,, f) for E with \ v3(E*) < [f,] is a gs.b.
r=1
Now let (x,, f,) be an arbitrary M-basis for E. Then, by Lemma 3 (with V' = [f,]),
0
we can find {v,} of finite rank satisfying (7) and U 9#(E*) < [f,). Hence, by the
n=1

above observation, (x,, f;) is a g.s.b. Thus, (2) = (1), which completes the proof.

Remark. We do not know any characterization (a) of all Banach spaces E
for which Lemma 2 or Lemma 3 remains valid, with “V total” replaced by “V nor-
ming” (i.e., r(¥) > 0); (b) of the Banach spaces E in which every norming M-basis
(%ns £;) (L., such that r([£,]) > 0) is a g.s.b. By the above, every quasi-reflexive
space (respectively, having also the b.a.p.) has these properties, but there might
exist non-quasi-reflexive ones, too. For example, we do not know whether the non-
quasi-reflexive spaces E such that every norming subspace ¥ of E* is of finite codi-
mension in E* have these properties (it is known that such spaces exist .
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Added in proof

The conclusion of Lemma 3 remains valid for every Banach space E with the b.a.p. and every
total subspace ¥ of E* with codim g+ < o0 (see L. D. Menihes and A. L. Pliko, Conditions of
linear and finite-dimensional regularizability of linear inverse problems, Dokl. Akad. Nauk SSSR.
241 (1978), pp. 1027-1030 (Russian)). Consequently, the answer to the last question above is af-
firmative.
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Let y e C*(I) be real-valued, where I = [0, 1]; define y: 7 — R? by

y(@® = @), tel,

and let I" denote the curve (7). We let dS denote the arc length measure on I" and
set

Sf0) = {ex1f()dS@), fe L}(T;ds), x e R,

r
It follows from the restriction theorem of C. Fefferman and E. M. Stein that
¢)] NS(f ey Dlragsy € Cp,pl| fewy,  fe CRWR),

for 4 < g < oo and g/(g—3) < p < oo, if I" has non-vanishing curvature at every
point (see Fefferman [2], Hormander [4] and Zygmund [8]).

We define an operator Q in the following way. Let ¢ be a fixed function in
CP(R) with support contained in (0, 1) and set Qf = S((¢f) oy™2), fe CE(R),
where f W) = Se“""‘f(t)dt. We shall here study the problem of determining for
what values of a the estimate
@ ( { lo/Grria+ )dx)" < Collf llowemy

R
is valid for all I'and ¢ of the above type (here C, may depend on I'and ¢, but not
on £, and we do not assume that I" has non-vanishing curvature). It turns out that
the operator @ is closely related to the Fourier multipliers [(y—(x))+]%e(x, ),
a > 0, g € C¥(R?), studied in Carleson and Sjdlin [1], Fefferman [3], Hormander
[4] and Sjélin [6]. We shall prove the following theorem.
THEOREM 1. Let Q be defined as above. Then (2) holds for

3 1<p<2 and a>2-pf2,
O] 2<p<4 and a>1
and for .
® d<p< oo and a>p/2-1.

16 Banach Center t. IV [241]
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