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Added in proof

The conclusion of Lemma 3 remains valid for every Banach space E with the b.a.p. and every
total subspace ¥ of E* with codim g+ < o0 (see L. D. Menihes and A. L. Pliko, Conditions of
linear and finite-dimensional regularizability of linear inverse problems, Dokl. Akad. Nauk SSSR.
241 (1978), pp. 1027-1030 (Russian)). Consequently, the answer to the last question above is af-
firmative.
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Let y e C*(I) be real-valued, where I = [0, 1]; define y: 7 — R? by

y(@® = @), tel,

and let I" denote the curve (7). We let dS denote the arc length measure on I" and
set

Sf0) = {ex1f()dS@), fe L}(T;ds), x e R,

r
It follows from the restriction theorem of C. Fefferman and E. M. Stein that
¢)] NS(f ey Dlragsy € Cp,pl| fewy,  fe CRWR),

for 4 < g < oo and g/(g—3) < p < oo, if I" has non-vanishing curvature at every
point (see Fefferman [2], Hormander [4] and Zygmund [8]).

We define an operator Q in the following way. Let ¢ be a fixed function in
CP(R) with support contained in (0, 1) and set Qf = S((¢f) oy™2), fe CE(R),
where f W) = Se“""‘f(t)dt. We shall here study the problem of determining for
what values of a the estimate
@ ( { lo/Grria+ )dx)" < Collf llowemy

R
is valid for all I'and ¢ of the above type (here C, may depend on I'and ¢, but not
on £, and we do not assume that I" has non-vanishing curvature). It turns out that
the operator @ is closely related to the Fourier multipliers [(y—(x))+]%e(x, ),
a > 0, g € C¥(R?), studied in Carleson and Sjdlin [1], Fefferman [3], Hormander
[4] and Sjélin [6]. We shall prove the following theorem.
THEOREM 1. Let Q be defined as above. Then (2) holds for

3 1<p<2 and a>2-pf2,
O] 2<p<4 and a>1
and for .
® d<p< oo and a>p/2-1.
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We shall also prove that the conditions on a in (3) and (4) can not be relaxed
and that it is not possible to have ¢ < p/2—1 in (5). In the case p = 2 the above
estimate is a consequence of Plancherel’s theorem. To treat the case p > 2 we shall

use the following lemma which is proved in [6].
Lemma 1. Let ¢ and yp € C=(I) and assume that y is real-valued. Set

Kn(x) = NS NGt (W) du, % = (x;, %) e R:, N 2 2,
b

and
1

Tof) = § KnCu—t, x)/0)dr,  fe 110, ).
0

Then, if 4 < p < © and & > 0, there exists a constant Cy, depending only on y, ¢,
p and &, such that
HTwS llzooy € CpNM2=2P%¢| £| 1201y,
where D = {xeR?; |xi| < 10, i =1,2}.
Theorem 1 is a consequence of the following lemma.

LeMMA 2. Let ¢ and y € C*(I) and assume that y is real-valued and ¢ has support
in the interior of I. Set

PA(x) = § eoutravod )fGddu, fe CP(R), xeR2.
I
Then

« 3 \1P
) (§ 1@+ xh=ax] " < GlIf llzw.
R ‘
if p and o satisfy the conditions in Theorem 1.

Proof. Case 1. p = 2. From Plancherel’s theorem it follows that for every x,,

§iprooan, = - (g frd < ¢l fwpa = c{iswra

and we obtain (6) with p = 2if & > 1.
Case 2. p= 1. We assume « > 3/2. The Schwartz inequality and the first

equality in Case 1 yield
§IPAOIL+ )= < (§ 127120+ bx=2 ) P (§ (14 )22 ) ™

< c(fi1p@iifoarad)” < CiiFil zom < Cllf e,
since 20/3 > 1 and 4a/3 > 2.
Case 3. 1 < p < 2. The desired estimate follows from interpolation between
the cases p = 1 and p = 2 (see Stein [7]).
Case 4. 4 <p < 0. For I =0, 1,2, ... we let ; denote the set of all inter-
valsog = (k2 (k+1)2"), k € Z, and 2f the set of all intervals of, = (k2', (k+2)2"),
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keZ For xe R} = {xeR?* x, > 0} let wf(x) denote the interval in Qf which
contains x; in its middle half, and let n(x) be an integer defined by 2"*-! < x,
< 2", if x, > 1, and n(x) = 0, if 0 < x, < 1. We set w,(x) = oty (N wF ()
for I > n(x) and w,(x) = wi,;(x) if I = n(x). It follows from the construction that,
for I > n(x), wi(x) is the union of two intervals w}(x) and w?(x) belonging to £,
and that there exist two positive constants ¢, and ¢, such that ¢, 2" < dist(x, 0} ()
< ¢,2, fori = 1,2. For I = n(x) > 0, w,(x) is a union of four intervals }(x) which
also satisfy the above inequality. We have

Pi) = ( [ etten=nuxwon g ) du) fydt
and we denote the inner integral by K(x; —¢, x,). For x, > 0 we have

]

) P = Y § Rea—t,x)f0)dr
I=n(x) w1(x)
=3, Y ) § Ke—t, x)0),
I=0 k=~ Dy

where yi is the characteristic function of the set Ey = {xeR%; oy < o,(x)].
From the above inequalities it follows that there exist positive constants ¢s and ¢,
such that

Ey < {x; 32" < dist(x, 0p) < 2"} if 1>0.

We denote the last sum in (7) by Pif(x) so that Pf(x) = >. P,f(x). The Holder
i=o
inequality yields

® PP < C Y 10| § KG—t, x)f0) ],
k

=-00 ©rk

since there exists a constant A such that, for every I and every x € R% x is contained
in at most A of the sets Ey, ke Z. Let

Efy = {x € Ey; x, > b(k2'—x,) and x, > b(x,— (k+1)2)}

and Ey; = Ey\ Ej,, where we choose the positive constant b so small that [x,—z+
+x,9' ()] > bo2' for t ewy, x € Ey, ue I and some constant b, > 0. Then

()] x> 052, xeEy, 1>0,

where ¢; is a positive constant. Denoting the integral in (8) by Py f(x), we shall
prove that

1lp

0 (] 1PasrQ+xo) )" < g 2o (§ | s at)

1k L1

and from translation invariance we may assume that k = 0. Using the notation of

16*
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Lemma 1 we have
1
Puofx) = | KnGei—t', xp)fvear,
H
where N = 2" and x = Nx'. Lemma 1 yields

(S oo fEx)1P )" ( | PSP ) A

1p

<C N”z”(SIf(Nt')l"dt ) I < C,N12- 1/p+x(S |f(t)|”dt)
@lo

where we have used the obvious fact that Lemma 1 holds also if the square D is
replaced by C, D = {C;x; x e D}, for some constant C, . Using (9), we now obtain
(10) with Ejy replaced by Eyy. For f € oy, x € Ey it follows from repeated partial
integrations in the integral defining K that |[K(xy—1, x,)| € CN~1°, since |x;—z+
+x,9"(u)] > boN for ue 1. Hence (10) holds with Ej, replaced by Ey and (10)
is completely proved. From (8) and (10) it follows that

§ PP+ dx < G201 ) fe
RY )
and, since ¢ > p/2—1, we can choose ¢ so small that p/2—1—a+pe = — §, where
6 > 0. Hence

1/,
(§ 1PsCr @+ eahdx)"” < G271 122,
#
(and the same inequality holds, if R? is replaced by R?) and summing over / we obtain
Lemma 2 in the case 4 < p < oo.

Case 5. 2 < p < 4. Interpolation between the cases p = 2 and p > 4 gives
the desired estimate.

The proof of Theorem 1 is complete.

We shall finally give a description of the counterexamples mentioned after the
statement of Theorem 1. It is clear that, for every value of p, @ > 1 is a necessary
condition for (2) to hold. This follows from the case when I'is a straight line segment.
A counterexample for 1 < p < 2 is obtained by assuming that I" has positive cur-
vature and choosing f and ¢ so that f¢ = 1 in an interval. Then 0S| = elx|=/2,
where c is a positive constant, when |x| is large and x belongs to a certain cone with

vertex at the origin (see e.g. Littman [S]). If (2) holds, the integral § [|x[~?2~*dx
jx[>1

has to be convergent, and hence o > 2— p/2.

It remains to treat the case 4 < p < 0. A counterexample can be obtained
from the connection between the operator Q and the multipliers mentioned above,
but we shall give a direct argument (cf. [4], pp. 9-10).
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We set
1
Pf) = § eftwrsang ) du,
where ¢ € C&(R) has support in the interior of [-1, 1] and ¢ (4) = 1 for |u] < 1/2,

and assume that inequality (6) in Lemma 2 holds. We shall prove that then
necessatily o > p/2—1. We choose f(t) = g(t/N)e?/N, where ge CP(R) equals
1 in a neighbourhood of the origin. Then || f||rx®) = CpN/? and

PANX) = N { [eNoaum etz 23 ()6 () it .

Setting o = t—u/2 we obtain X;u—tutxu®+12 = x u+(x,—1/4)u>+02. It
therefore follows from the stationary phase method that

[PANX)| = c1lx,—1/4]722 Ix1] < eslx,—1/4], es < Nix,—1/4,

where ¢;, ¢, ¢; are positive constants. Hence |[Pf(x)] > ¢, N'2|x,—N/4|~1* for
[%1] < ealx,—N/4|, ¢35 < [x,—N/4|. It follows that

for

§IPAP -+ ey dx > e, NP2,

where ¢, is a positive constant. Inequality (6) yields N?2-= g

C,N, but this can
hold for large values of N only if « > p/2—1. )
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