240 I. SINGER

Added in proof

The conclusion of Lemma 3 remains valid for every Banach space E with the b.a.p. and every total subspace V of E^* with codim $_{E^*}V < \infty$ (see L. D. Menihes and A. L. Pličko, Conditions of linear and finite-dimensional regularizability of linear inverse problems, Dokl. Akad. Nauk SSSR 241 (1978), pp. 1027–1030 (Russian)). Consequently, the answer to the last question above is affirmative.

References

- [1] W. J. Davis and W. B. Johnson, Basic sequences and norming subspaces in non-quasireflexive Banach spaces, Israel J. Math. 14 (1973), pp. 353-367.
- [2] W. J. Davis and J. Lindenstrauss, On total nonnorming subspaces, Proc. Amer. Math. Soc. 31 (1972), pp. 109-111.
- [3] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), pp. 1057-1071.
- [4] V. F. Gaposhkin and M. I. Kadec, Operational bases in Banach space, Mat. Sb. 61 (103) (1963), pp. 3-12 (Russian).
- [5] W. B. Johnson, Markuschevich bases and duality theory, Trans. Amer. Math. Soc. 149 (1970), pp. 171-177.
- [6] —, On the existence of strongly series summable Markuschevich bases in Banach spaces, ibid. 157 (1971), pp. 481–486.
- [7] M. I. K a d e c, On biorthogonal systems and summation bases, Funkcional. Anal. i Primenen., pp. 106-108 (Russian), Akad. Nauk Azerbaĭdžan. SSR, Baku 1961.
- [8] I. Singer, Bases and quasi-reflexivity of Banach spaces, Math. Ann. 153 (1964), pp. 199-209.

Presented to the Semester Approximation Theory September 17-December 17, 1975

APPROXIMATION THEORY BANACH CENTER PUBLICATIONS, VOLUME 4 PWN—POLISH SCIENTIFIC PUBLISHERS WARSAW 1979

A RELATION BETWEEN FOURIER TRANSFORMS IN ONE AND TWO VARIABLES

PER SJÖLIN

University of Stockholm, Department of Mathematics, Box 6701, S-11385 Stockholm 23, Sweden

Let $\psi \in C^{\infty}(I)$ be real-valued, where I = [0, 1]; define $\gamma: I \to \mathbb{R}^2$ by

$$\gamma(t) = (t, \psi(t)), \quad t \in I,$$

and let Γ denote the curve $\gamma(I)$. We let dS denote the arc length measure on Γ and set

$$Sf(x) = \int_{\Gamma} e^{ix \cdot t} f(t) dS(t), \quad f \in L^1(\Gamma; dS), \ x \in \mathbb{R}^2.$$

It follows from the restriction theorem of C. Fefferman and E. M. Stein that

(1)
$$||S(f \circ \gamma^{-1})||_{L^{q}(\mathbb{R}^{2})} \leq C_{q,p}||f||_{L^{p}(\mathbb{R})}, \quad f \in C_{0}^{\infty}(\mathbb{R}),$$

for $4 < q < \infty$ and $q/(q-3) \le p \le \infty$, if Γ has non-vanishing curvature at every point (see Fefferman [2], Hörmander [4] and Zygmund [8]).

We define an operator Q in the following way. Let ϕ be a fixed function in $C_0^{\infty}(\mathbf{R})$ with support contained in (0,1) and set $Qf = S((\phi \hat{f}) \circ \gamma^{-1})$, $f \in C_0^{\infty}(\mathbf{R})$, where $\hat{f}(u) = \int e^{-iut} f(t) dt$. We shall here study the problem of determining for what values of α the estimate

(2)
$$\left(\int_{\mathbb{R}^2} |Qf(x)|^p |(1+|x|)^{-\alpha} dx\right)^{1/p} \leqslant C_p ||f||_{L^p(\mathbb{R})}$$

is valid for all Γ and ϕ of the above type (here C_p may depend on Γ and ϕ , but not on f, and we do not assume that Γ has non-vanishing curvature). It turns out that the operator Q is closely related to the Fourier multipliers $[(y-\psi(x))_+]^\alpha \varrho(x,y)$, $\alpha>0$, $\varrho\in C_0^\infty(R^2)$, studied in Carleson and Sjölin [1], Fefferman [3], Hörmander [4] and Sjölin [6]. We shall prove the following theorem.

[241]

THEOREM 1. Let Q be defined as above. Then (2) holds for

$$(3) 1 \leq p \leq 2 and \alpha > 2-p/2,$$

(4)
$$2 and $\alpha > 1$ and for$$

$$(5) 4 p/2 - 1.$$

16 Banach Center t. IV

We shall also prove that the conditions on α in (3) and (4) can not be relaxed and that it is not possible to have $\alpha < p/2-1$ in (5). In the case p=2 the above estimate is a consequence of Plancherel's theorem. To treat the case p>2 we shall use the following lemma which is proved in [6].

LEMMA 1. Let ϕ and $\psi \in C^{\infty}(I)$ and assume that ψ is real-valued. Set

$$K_N(x) = N \int_{\Gamma} e^{iN(x_1u + x_2\psi(u))} \phi(u) du, \quad x = (x_1, x_2) \in \mathbb{R}^2, \ N \geq 2,$$

and

$$T_N f(x) = \int_0^1 K_N(x_1 - t, x_2) f(t) dt, \quad f \in L^1(0, 1).$$

Then, if $4 and <math>\varepsilon > 0$, there exists a constant C_p , depending only on ψ , ϕ , p and ε , such that

$$||T_N f||_{L^p(D)} \leqslant C_p N^{1/2-2/p+\epsilon}||f||_{L^p(0,1)},$$

where $D = \{x \in \mathbb{R}^2; |x_i| \leq 10, i = 1, 2\}.$

Theorem 1 is a consequence of the following lemma.

LEMMA 2. Let ϕ and $\psi \in C^{\infty}(I)$ and assume that ψ is real-valued and ϕ has support in the interior of I. Set

$$Pf(x) = \int_{I} e^{i(x_1 u + x_2 \psi(u))} \phi(u) \hat{f}(u) du, \quad f \in C_0^{\infty}(R), \ x \in R^2.$$

Then

(6)
$$\left(\int_{\mathbb{R}^{2}} |Pf(x)|^{p} (1+|x|)^{-\alpha} dx\right)^{1/p} \leqslant C_{p} ||f||_{L^{p}(\mathbb{R})},$$

if p and α satisfy the conditions in Theorem 1.

Proof. Case 1. p = 2. From Plancherel's theorem it follows that for every x_2 ,

$$\int |Pf(x)|^2 dx_1 = \frac{1}{2\pi} \int |\phi(u)|^2 |\hat{f}(u)|^2 du \leqslant C \int |\hat{f}(u)|^2 du = C \int |f(t)|^2 dt$$

and we obtain (6) with p = 2 if $\alpha > 1$.

Case 2. p = 1. We assume $\alpha > 3/2$. The Schwartz inequality and the first equality in Case 1 yield

$$\begin{split} \int |Pf(x)|(1+|x|)^{-\alpha}dx & \leq \left(\int |Pf(x)|^2(1+|x|)^{-2\alpha/3}dx\right)^{1/2} \left(\int (1+|x|)^{-4\alpha/3}dx\right)^{1/2} \\ & \leq C \left(\int |\phi(u)|^2 |\hat{f}(u)|^2 du\right)^{1/2} \leq C||\hat{f}||_{L^{\infty}(\mathbb{R})} \leq C||f||_{L^{1}(\mathbb{R})}, \end{split}$$

since $2\alpha/3 > 1$ and $4\alpha/3 > 2$.

Case 3. 1 . The desired estimate follows from interpolation between the cases <math>p = 1 and p = 2 (see Stein [7]).

Case 4. 4 . For <math>l = 0, 1, 2, ... we let Ω_l denote the set of all intervals $\omega_{lk} = (k2^l, (k+1)2^l), k \in \mathbb{Z}$, and Ω_l^* the set of all intervals $\omega_{lk}^* = (k2^l, (k+2)2^l)$,

 $k \in \mathbb{Z}$. For $x \in \mathbb{R}^2_+ = \{x \in \mathbb{R}^2; x_2 > 0\}$ let $\omega_l^*(x)$ denote the interval in Ω_l^* which contains x_1 in its middle half, and let n(x) be an integer defined by $2^{n(x)-1} \leqslant x_2 < 2^{n(x)}$, if $x_2 \geqslant 1$, and n(x) = 0, if $0 < x_2 < 1$. We set $\omega_l(x) = \omega_{l+1}^*(x) \setminus \omega_l^*(x)$ for l > n(x) and $\omega_l(x) = \omega_{l+1}^*(x)$ if l = n(x). It follows from the construction that, for l > n(x), $\omega_l(x)$ is the union of two intervals $\omega_l^1(x)$ and $\omega_l^2(x)$ belonging to Ω_l , and that there exist two positive constants c_1 and c_2 such that $c_1 2^l < \operatorname{dist}(x, \omega_l^1(x)) < c_2 2^l$, for i = 1, 2. For l = n(x) > 0, $\omega_l(x)$ is a union of four intervals $\omega_l^1(x)$ which also satisfy the above inequality. We have

$$Pf(x) = \int \left(\int e^{i((x_1-t)u+x_2\psi(u))} \phi(u) du \right) f(t) dt$$

and we denote the inner integral by $K(x_1-t, x_2)$. For $x_2 > 0$ we have

(7)
$$Pf(x) = \sum_{l=n(x)}^{\infty} \int_{\omega_{1}(x)} K(x_{1}-t, x_{2})f(t)dt$$
$$= \sum_{l=0}^{\infty} \sum_{k=-\infty}^{\infty} \chi_{lk}(x) \int_{\omega_{1k}} K(x_{1}-t, x_{2})f(t)dt,$$

where χ_{lk} is the characteristic function of the set $E_{lk} = \{x \in \mathbb{R}^2_+; \omega_{lk} \subset \omega_l(x)\}$. From the above inequalities it follows that there exist positive constants c_3 and c_4 such that

$$E_{lk} \subset \{x; c_3 2^l < \text{dist}(x, \omega_{lk}) < c_4 2^l\} \quad \text{if} \quad l > 0.$$

We denote the last sum in (7) by $P_1f(x)$ so that $P_1f(x) = \sum_{l=0}^{\infty} P_lf(x)$. The Hölder inequality yields

(8)
$$|P_1 f(x)|^p \leqslant C \sum_{k=-\infty}^{\infty} \chi_{lk}(x) \left| \int_{\omega_{lk}} K(x_1 - t, x_2) f(t) dt \right|^p,$$

since there exists a constant A such that, for every l and every $x \in \mathbb{R}^2_+$ x is contained in at most A of the sets E_{lk} , $k \in \mathbb{Z}$. Let

$$E'_{1k} = \{x \in E_{1k}; x_2 > b(k2^l - x_1) \text{ and } x_2 > b(x_1 - (k+1)2^l)\}$$

and $E'_{lk} = E_{lk} \setminus E'_{lk}$, where we choose the positive constant b so small that $|x_1 - t + x_2 \psi'(u)| > b_0 2^l$ for $t \in \omega_{lk}$, $x \in E'_{lk}$, $u \in I$ and some constant $b_0 > 0$. Then

(9)
$$x_2 > c_5 2^l, \quad x \in E'_{lk}, \ l > 0,$$

where c_5 is a positive constant. Denoting the integral in (8) by $P_{lk}f(x)$, we shall prove that

(10)
$$\left(\int_{E_{1k}} |P_{1k}f(x)|^p (1+x_2)^{-\alpha} dx \right)^{1/p} \leqslant C_p 2^{l(1/2-1/p-\alpha/p+e)} \left(\int_{\omega_{1k}} |f(t)|^p dt \right)^{1/p}$$

and from translation invariance we may assume that k = 0. Using the notation of

Lemma 1 we have

$$P_{10}f(x) = \int_{0}^{1} K_{N}(x'_{1}-t', x'_{2})f(Nt')dt',$$

where $N = 2^t$ and x = Nx'. Lemma 1 yields

$$\begin{split} \left(\int_{E_{lk}'} |P_{l0}f(x)|^p dx \right)^{1/p} & \leq \left(\int_{C_1 D} |P_{l0}f(Nx')|^p dx' \right)^{1/p} N^{2/p} \\ & \leq C_p N^{1/2 + \epsilon} \left(\int_0^1 |f(Nt')|^p dt' \right)^{1/p} \leq C_p N^{1/2 - 1/p + \epsilon} \left(\int_{\omega_{l0}} |f(t)|^p dt \right)^{1/p}, \end{split}$$

where we have used the obvious fact that Lemma 1 holds also if the square D is replaced by $C_1D = \{C_1x; x \in D\}$, for some constant C_1 . Using (9), we now obtain (10) with E_{lk} replaced by E'_{lk} . For $t \in \omega_{lk}$, $x \in E'_{lk}$ it follows from repeated partial integrations in the integral defining K that $|K(x_1-t,x_2)| \leq CN^{-10}$, since $|x_1-t+x_2\psi'(u)| > b_0N$ for $u \in I$. Hence (10) holds with E_{lk} replaced by E''_{lk} and (10) is completely proved. From (8) and (10) it follows that

$$\int_{R_{+}^{2}} |P_{l}f(x)|^{p} (1+x_{2})^{-\alpha} dx \leqslant C_{p} 2^{l(p/2-1-\alpha+pe)} \int |f(t)|^{p} dt$$

and, since $\alpha > p/2-1$, we can choose ε so small that $p/2-1-\alpha+p\varepsilon = -\delta$, where $\delta > 0$. Hence

$$\left(\int_{\mathbb{R}^2} |P_1 f(x)|^p (1+|x_2|)^{-\alpha} dx\right)^{1/p} \leqslant C_p 2^{-1\delta/p} ||f||_{L_{(\mathbb{R})}^p}$$

(and the same inequality holds, if R_+^2 is replaced by R_-^2) and summing over l we obtain Lemma 2 in the case 4 .

Case 5. 2 . Interpolation between the cases <math>p = 2 and p > 4 gives the desired estimate.

The proof of Theorem 1 is complete.

We shall finally give a description of the counterexamples mentioned after the statement of Theorem 1. It is clear that, for every value of p, $\alpha>1$ is a necessary condition for (2) to hold. This follows from the case when Γ is a straight line segment. A counterexample for $1 \le p < 2$ is obtained by assuming that Γ has positive curvature and choosing f and ϕ so that $\hat{f}\phi = 1$ in an interval. Then $|Qf(x)| \ge c|x|^{-1/2}$, where c is a positive constant, when |x| is large and x belongs to a certain cone with vertex at the origin (see e.g. Littman [5]). If (2) holds, the integral $\int_{|x|>1} |x|^{-p/2-\alpha} dx$ has to be convergent, and hence $\alpha>2-p/2$.

It remains to treat the case 4 . A counterexample can be obtained from the connection between the operator <math>Q and the multipliers mentioned above, but we shall give a direct argument (cf. [4], pp. 9-10).

We set

$$Pf(x) = \int_{-1}^{1} e^{i(x_1 u + x_2 u^2)} \phi(u) \hat{f}(u) du,$$

where $\phi \in C_0^{\infty}(R)$ has support in the interior of [-1,1] and $\phi(u)=1$ for $|u|\leqslant 1/2$, and assume that inequality (6) in Lemma 2 holds. We shall prove that then necessarily $\alpha \geqslant p/2-1$. We choose $f(t)=g(t/N)e^{\mu^2/N}$, where $g\in C_0^{\infty}(R)$ equals 1 in a neighbourhood of the origin. Then $||f||_{L^p(R)}=C_pN^{1/p}$ and

$$Pf(Nx) = N \int \int e^{iN(x_1u - tu + x_2u^2 + t^2)} g(t) \phi(u) dt du.$$

Setting v=t-u/2 we obtain $x_1u-tu+x_2u^2+t^2=x_1u+(x_2-1/4)u^2+v^2$. It therefore follows from the stationary phase method that

$$|Pf(Nx)| \ge c_1 |x_2 - 1/4|^{-1/2}$$
 for $|x_1| < c_2 |x_2 - 1/4|$, $c_3 < N|x_2 - 1/4|$,

where c_1 , c_2 , c_3 are positive constants. Hence $|Pf(x)|>c_1N^{1/2}|x_2-N/4|^{-1/2}$ for $|x_1|< c_2|x_2-N/4|$, $c_3<|x_2-N/4|$. It follows that

$$\int |Pf(x)|^{p} (1+|x|)^{-\alpha} dx \geqslant c_{4} N^{p/2-\alpha},$$

where c_4 is a positive constant. Inequality (6) yields $N^{p/2-\alpha} \leq C_p N$, but this can hold for large values of N only if $\alpha \geq p/2-1$.

References

- L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc Studia Math. 44 (1972), pp. 287-299.
- [2] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), pp. 9-36.
- [3] -, A note on spherical summation multipliers, Israel J. Math. 15 (1973), pp. 44-52.
- [4] L. Hörmander, Oscillatory integrals and multipliers on FLP, Ark. Mat. 11 (1973), pp. 1-11.
- [5] W. Littman, Fourier transform of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), pp. 766-770.
- [6] P. Sjölin, Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in R², Studia Math. 51 (1974), pp. 169-182.
- [7] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), pp. 482-492.
- [8] A. Zygmund, On Fourier coefficients and transform of functions of two variables, Studia Math. 50 (1974), pp. 189-201.

Presented to the Semester
Approximation Theory
September 17-December 17, 1975