icm°

APPROXIMATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 4
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1979

ON UNCONDITIONAL CONVERGENCE OF HAAR SERIES

G. TKEBUCHAVA
University of Tbilisi, Institute of Applied Mathematics, Tbilisi, U.S.S.R.

The following result of A. Petczyniski [10] is well known: there are no unconditional
bases in the space L(0, 1). In particular, the Haar system is not an unconditional
basis in the space L(0, 1). Moreover, as was shown by V. F. Gaposhkin [4], [5],
the Haar system is an unconditional basis in an Orlicz space if and only if it is reflex-
ive (for the suffiency of the theorem see also [3]). According to the results of A. M.
Olevski [8], reflexivity is a necessary and sufficient condition for the existence of
an unconditional basis in an Orlicz space. P. L. Uljanov [13] and M. B. Petrovskaia
[9] considered the question under what conditions the function f has its Fourier—
Haar series unconditionally convergent in the metric of the space L(0, 1). Analogi-
cal questions about the unconditional convergence in classes of spaces, containing
in particular the spaces LIn*(0, 1) (« > 0), have been considered in [8], [11], and
[12]. In this paper we consider necessary conditions for the unconditional conver-
gence of multidimensional Fourier-Haar series in certain nonreflexive spaces of
functions.

Let R" be the n-dimensional real Euclidean space of points X = (%, ..., X,),
I"=1[0,1;...; 0, 1] the n-dimensional lunit cube, and N” = R" the subset of posi-

n
tive integer points 7 = (my, ..., m,) and [/ = 3. m,.
i=1
Moreover, we use below the following notation; rm = (rmy, ..., rmy), 1=

(yoes Dy (013 = ol mets 3, ()= 2 3E 0,

The convergence M — oo is understood in the sense of Pringsheim, i.e. it is
equivalent to M; — oo for all 1 < i < n, and @(L) denotes the class of measurable

functions f(¥) on the cube I" for which { #(f(3))dx < co. In the sequel, Lj

n
= L5(I") denotes a Banach space of functions defined on the cube I" which is
generated by N-functions with @ as their principal part (for details cf. [7]). We
assume that the function @ considered below satisfies condition 4, (i.e. PQu)
< CP(u) for u > uy). This condition is necessary and sufficient for the Orlicz space
L} to be separable.
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In the sequel the following notation will be used: C'— absolute positive con- According to the results of P. L. Uljanov ([14], p. 664) (3) implies (4). Since,
stants, Igu = Ig,u, foru> 1,
k u
24p00) = > 0 lpmtn,  4(oem) = 2 (), P > u( | 602l > @O0,
=0 i

A@) = 2 —p@ie), T = s s iy i L g, m,), it follows that the left-hand inequality in (5) holds. Since the function u~'®(x) is
m)) = monotone for u > 1, the right-hand inequality in (5) holds, too.
Batc@) = A3y, .. 4,, (), Finally, let m, > m,; then
o(m) = 2" FI@2I) V77 e N” (the funciion @ is defined below),

C
by = [l "™ () * B < 2 =(1+

[

) (1S rem
m1+m2—1) ( my @)

DermvITION 1. Let B be a Banach space and let 4 be a subset of B. The sequence c\™ . . .
{%m}7~1 in the space B is called an (unconditional) basis of A in the norm of the space <2 2(1 + N D2™) < C2™P(2™),
B if for every x € 4 there exists a unique sequence of scalars {a}5 =7 such that _ .
Applying this estimation, we obtain (6).

Let {ym(x)}3-: denote the Haar system on the interval I' = [0, 1] defined as
follows (cf. [13], pp. 54-55):

21(x)=1for0< x< 1, and

o0
the series Y. a5 x5 (unconditionally) converges to x.
m=1
DermviTion 2. The function @ satisfies condition (x) iff @ is an N-function and
the following conditions hold:

— 2k-2 2k—1
M 0 < om)A¥(m g™ m)) < Cm~"%, k=1, ..,n. V¥  for S <X < s
LemMa 1. Let the function D satisfy condition (x). Set _ - 1 %
Jal : xm(x) - ]/2’ for 22p+1 <x < T
-2 n—1
()] Y = o (5 20 fdt) ™l +2) - for > 1, 0 elsewhere in 1!
0 Sor  |ul < 1.

for m=2°+k, p=0,1,..., k=1,...,2°. Let {yz(*)}5-1 denote the Haar

Then the following inequalities hold: system defined on I", where ym(®) = fm, (1) - Zma(¥n)-

&) Du?) < Clul®(u), We shall use below the following facts:
i C
@ D(w) < Clul(Ig(ul +2))°, @ C D= o,
® CD)(Igtlu))" < Pw) < CO) (g™ |ul)", m=1
® o(u+2) < Clo@)+o()). © i Bt < 0 ya > 0.
Proof. 1t follows from Definition 2 for k = 1 that m=1
D™ < 2(1+ Cm~Y)B2M), 1t follows directly from (7) that
whence for large |ul, < _
o)< g © D bre(l) =
m=1
2+ [1glu| ¢ _)( ¢ ) ( c ) 1g|u imply th
Py " 2figa) -\ gy 2O < 2@, 1 (- ©), ) imply that

and this implies (3). (10) id(bﬁ)g(lﬁl]) = N (e @elF) < € Y. Imi= < oo.

) m=1
* Here and later on e~ (m) = 1/o(m). = "

m=1
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Let &(t) be such a function that &(r)|0 while £ — o, 0 < s(f) <1 and let {hpee is decreasing for every m; (1 < i< n), tends to 0, and satisfies the inequalities
(/o = 0) be an increasing sequence of integers satisfying some conditions specified m
below. o
Let us define the following sets: @7 Z] ﬁ;k ame(Iml) = oo,

(18)) Vi = {m: +1 < maxm; < ket T k=0,1,2,.., .

1<ign B ) ‘
2 Ve = {m: h+1 <maxm <k}, £=0,1,2,.., @8 ZAJI-....Jk(aﬁ)QﬂmD <o, 1<ji<..<jgn,

1<ign P
13) Se=V N\, k=1,2,.., ©
(14 We={m: h+1<m<hy, 1<i<n}, k=0,1,2,.. (29) Zz—lml(w (2™ A(a5))) e (27 4(ar)) P (27 4(a5)) < 0.
In addition, we set =1

Proof. (27) follows immediately from (16) and (24)

(15) D, =_Z l;n—l—n’ k = ],2,“_’ . . .

meWi Z Z (["[) WD 4 i 1

—ien amo(im =Zkl?> - = 0.

(16) h ,=_ZV |m=",  k=1,2,.., =imemy =1 £ 2

meVyg

Ao (A" for WeV, k3 1, The proof of (28) runs as follows:

(17) A =\ |— — ' o ) )

m|~" for meV,. —

i ° GO P dialade@m) = > + D Y + > S = Ardytd,.
Let us note that . el Welo =1yt  pe1mesSy
(18 brdz' for meV, k> 1, It follows from (1), (8), (12) and (16) thatfor 1 <k < n

B=Nm for  me v, ' w
Since GD 4; < CZA,:1 Z m|="* < CZ Jm]="~* < .
p=1 e, =1
(19) Ajn---,jk(bﬁl) 20, 1<j<..<ji<n, . _ ’
Since for me S,
we have
) = AT1h

20) djnlam) 20, 1<j,<...<j<n. 4y, ...0(a@m) = 45 bz,

. and
In view of &(r) | 0 for ¢ — oo, using (7) we can choose 2 sequence {4 }%-, in such moreover,

a way that the conditions introduced below are fulfilled for k = 1,2,... Z 7] . iformly)
m|™" < 0 ’p uniformly),

@n e(m)) < k2, for [m|> 1, i3y

v2)} Dy > k2, we obtain, by (22) and by the fact that D, < 4,

@3 Dyyy > 4D, w

@ Dy > 34y, 32) Ay < Y a7t ST < o
@9 Apyy > Ay =1 e,

4, is finite, and so by (30)~(32) we have (28).

Consequently, the following inequalities hold: To prove (29) we set

@9 D s < A k=%, k=12, .. *0 = {m: meVy, 1 < 2d(@) < @}, k=1,2, ..,
mely
LEMMA 2. Let @ be a function satisfying condition (x) and let &(t) |, 0 for t - oo, @3 = (7 e Ve, 2 () > ), k=12,

0 < &(t) < 1. Then the sequence {am}s-1, constructed according to (18), (21)-(25), o = {m: me S, 2R > M}, k=1,2,..
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Now we have the following decomposition:

{Z 2-mid (zlﬁlA (aﬁ)) € (2|ﬁ|A (a,;)) (In* (2"7 1A (az) ))"
=1

0 o0 4
N
= Z Z + Z Z + Zﬂ Z z Hl'
meVa k= ‘ﬁefﬂl) k=1merk k= 1551;‘3) =1

According to (4) and the properties of the function &(¢) we have
00
o, <> 2y [fS(7]) < .
m=1
Further, by (1) and (26) we get

I, < ) A7 Y s(F)AGR(FDIF < Y A7t Y [7il="e(l]) < .

k=1 P = mePk

n—1 l—1 —

<2t i (Z Z )A (@m,,.. TN R W) X

£S1p=1 m=t mp=1
X (imi‘*'lk("—P))n'Q(
=1 '

i=1

Jv

mi+ Ln—p))

n—-1 [l—1 Iy~

SCZAklz Z 2)(Zm+lk(n—p)) C,i'i’:l«”’

=1 m=1 mp=1 i=1
and this completes the proof of Lemma 2.
Let {c5} denote either {a5} or {bz}, and let us set, for a positive integer r,
pj—~1 Pj—1
. Z ) 2 oAyt Bgy kD) X

=1

Terp) = ) (=1
k=0

1<ji<m<jisn mj =1

X crmjl, B LT TR TR

The following equality will be useful: for arbitrary positive integer r and such x
that x;e Q== 2= 1 < p; < M;, 1<i<n,

M .
2 2 ety () = Tierp).

m=T
It is easy to verify this fact by induction with respect to n.
Lemua 3. For a sufficiently large r the following inequdlities hold:
 T(bp) > 28~

GH

(33)

@36) TG,y > 227
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Proof. First we shall prove that for an arbitrary & > 0 one can find such an
R(e) that for r > R(e),

&) G(brp) = T(h.p) b3 — 21181  e2r18l,
Indeed, G(b,;) can be represented as a finite combination of sums of the form
lpj /21 Ippf By, —1 Pyt
Bl
H= . A Z b.;ilzl(mjl+'"+mfa+pjs+1+"'+pjn) X
mj =1 my =1 m.7:+1=[pf.v+1/2] my=lp; /2

X brmjl,..‘,rmjk,rpjk“....,rpjn O<s<k<g n, k=1,

where the first group of sums is degenerated for s = 0 and the second one for s = k.
However, from (3), (4), (6) and the estimate

[Plemst oo +mu+3Phact o PP F o ) < py

(2+ Z_pn) (— Z Pn) (e(r v’ pf,)+e(r i pj.))Z_%‘ "pj‘x_

i=s i=1 i=s+1

x (2 — 1)-k2ri7]
g &
(4 n
< C2ripl ((1‘ E p_/‘) +C) (2+ ij) 2
i=1 : i=1

It is clear that the last term tends to O while r ~ co (because of the first factor for
s = 0 and of the second one for s > 0). Now it is easy to find such an R(¢) that for
r > R(z) we get (37). Setting ¢ = 1/2, we obtain (35). Since for a sufficiently large r

- +Pjt+2

-

1

s
—'% Z Pjy

=1 @—1)y*

€:) biglrpl "< > 2'7= 0,
(36) immediately follows from (37).

LeMMA 4. There are a positive integer R and a set P ‘< N such that for r > R
we have

39 > ane(rip) = o,
rpeP
(40) T(a) = 2Ivl~1a,;  VrpeP,
ro_
@1 T(a;) > 227" vrpeP. )
Proof. Set
o0

) P=Ur,

r=2
where
@) Y= {m: meWq; 4l <m < hyy; 1<i<n, Ay < min2mi},

1<i<n
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@ Zy={mmeW, dh<m<lhy,, 1<i<n, 4> min 2™},

1<isn

Now by (44) and (27) we get

Zap@(lp!) ZZ welid- 3 S 51 N

k=2 peWy k=2 peZx i=1 k=2p=1Ix
© 4lg 0 L)
IDIPIP I s> 30 qel- 35 S s
prer=lk pi=lk pis1=Ik pn=lk k=2 peWy i=1k=2 peWx

© 4l
—C Y (ot DAY > Z‘ D ase(lp)~C—C = o
Pi=l k=2 peWx
hence taking into account the monoto nicity of the function a5 o([p}) (for separated
coordinates p;, 1 < i < n), we obtain (39).

Now we shall prove (40). Since for an arbitrary positive integer r there exist
infinitely many 7p e P (as follows from (39)), there is a k, such that rp € Y,,. Since
the set P is symmetric with respect to the diagonal of an n-dimensional matrix,
then it is enough to show that for any e > 0,1 < /< n, and for a sufficiently large r,
the following inequality is satisfied:

pj,-1 Pj—1
“5) U= Z Z 2ttty e -H’j")armj‘,...,rmj,,rpj,“,....rpj,, < Ez’ma,;, .
mjy= my=1

Let
X={7: g <r(pp—-1), 1 < i< k; g =pj, k+1<i<n};
hence we have the following composition (see (42)):
k-1
U= Z +
=0 rmeWi rmeX
o R T

< a5 14s, Z 2r('"1,+ PRt AR B Dy gty et
mp=1 my= ' ’
Pj—1 1’11'1
+ Z . Z Zr(mfx""“‘+"'Jl+pfl+1+"‘+pfn)br_l‘,lb
mj =1 my =1
By estimations (37), (43) we get (45), and by (38) we obtain (41).
LEMMA 5. Let the function ® satisfy condition (x). Then
(1) For

v -k
b5 = ¢1~c5+ Z =" Z Ay trian(Cop 41,y b Loy oons),
k=0 Isjhi<..<jksn

i ARSRL B /e '“’""Jn} :

we have

“0) ( i [2171202% o7 , 7(%) l) dx < 0.

=
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(2) Also we have
47 i 2-1AP2lple;) = oo
Proof. Appling (6) and (4;=f]or all 7 (uniformly), we get

ie(lil)e“(lﬁl)ﬁl“m < Z {e(pl-m)e~*(m])+1}2m-17l < C.

P

'ql

Hence, by the properties of @, we obtain

@) cb(Zlemuzam 7 @)l

=l
0

<cSrrmal3

p=1
< CZ o(I7)) Ze(ime-l<|;m)2!ﬁl—m < cZeamDeﬁ.
m=1 p=m m=1

Since 0 is estimated by the finite combination of elements 4 10 2c(M), according
to (28) we have

M’m

lmla_) <C Z 0D Z 20 ~15lf

=1

!1
=l

D e(mbs < o,
m=1
whence by (48), we get (46).
Applying properties (3) and (4), we can easily get (47). Indeed,

o«
cZz—ls@(zmc,_,);c Z 2- 18P (2312 ¢
B=1

cia:z—fiIIZ }
> (i ~ > Jerelah = Z cze(/B)—C.
l_’=-i 017(2—]’;“2 -=

Because of (9) and (27), the last equality is equal to oo; hence (47) holds true and
this completes the proof of Lemma 5.

THEOREM 1. Under condition (v) the function

2+ A(cz)  for Ee @-F-T 2-m),
16) = S, {eah) = g o) Jor =

elsewhere in I",
has the following property: there exists a subseries of Haar—Fourier series which
converges to oo in the norm of the Orlicz space Li(I"), though f e Ly(I").
Proof. According to the definition of the function f and according to conditions
(1), (8) and (28), by using properties of function @, we obtain

{o(1®)ds < w.
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Thus f e LEU™).

Now, choosing by Lemma 3 and 4 a sufficiently large r, let us consider the
series

o0 ro__
ZZT|M|C:-:?:ZZ’E+I®
=1
and let
Pn{m: 1< m < H} for s = ag,
= N'n{m: 1< < M} for = bs.

Taking into account (34), (35) and (40) and the fact that @ is even and using the
definition of the set Ej;, we get

Mo, M 2P
4 B={o(Y 2 eptma@)az> D |
" =1 F=2 2-7p—1

M .
>2 Zz—vi@(r(c,,—,))~>c EZE 2-rp(218lc,y),
rpef—

%o,
@(Z 27'm,c,;xzrﬁ+7®)df
- ]

m

=

=2

whence by (47) it follows that B — co for M — oo (49). Now let us compute the
d351(f) — Fourier coefficients of the function I

\ L P A
(50)  dma(f) = 2!5[/22 (~1p=* S
k=0 Isji<...<jksn 0 0 2_}’Jk+1'1
22,
S SE)dX = 2/52(c;—0;).
2-Pj,—1

Thus by the properties of the function @ and by (46), (50) and (49) we obtain

M
6D lim § @(; &7 1(f) g @) dE > Clim [

M-ro0 IN

A—l ro_
2_23 : ‘]Crﬁm’ﬁﬂ@)df -
1

~Clim S@(iﬁ‘“’e,ﬁxzrﬁJri(z))dz = .

m-+e0 fn

m=1

However, it follows from (51) (see [7], p. 92) that for the Haar—Fourier series of

ﬂ;e(;':t)nction S there exists a subseries which diverges in the norm of the Orlicz space
MIOR

00
Z_ Ay 3(f) o 4 7(%).

=1

According to the well-known theorem of Orlicz concerning unconditional conver-
gence (see [6], p. 20) we get our statement.
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THEOREM 2. Let the function D satisfy condition (x). If () = 0(¢(u)ln"u)
for u— co is an even, nonnegative and nondecreasing function on [0, o) and $(u)
= O(H(u)), then the Haar system does not form an unconditional basis in the norm
of the Orlicz space Li(I™ for the class 6(L).

Proof. It follows that 6(L) = S(L). It will be seen that by the assumption of
the theorem there exists a function from the class (L) with the Haar-Fourier
series which does not converge unconditionally in the norm of L(I"). One can find
suchan N > 2 that 6(u) > 0 for n> N. Then 0(u) = @) P)n"s for n 3> N,
where &(u) — 0 for u— co. Set

supe(t) for u> N,
g(u) = tt=u
(N) for 0<u<N,
and
P {a(u)qj(u)ln"u for uzN,
® =)o for 0<u<AN.

Since &(x) > &(u) for u > N, E()|0 for u — , G(4) > 6(w) for u > 0, we can con-
struct according to (18), (21)—(25) the desired sequence {az}. Thus by Theoreni
1 the function f(%, {a5}) € LG(I"), and its Haar-Fourier series does not converge
unconditionally in the norm of this space. We shall show that f e 6(Z). Indeed, letting

E= {%:Xel", f(® >N},
we infer by (29) and the definition of §(x), that

foumniz < (§ + By

IME E
<ON)+C D 2-1ls(2-FlA(a3))B(274(a7)) (In* (274 (@) < oo,
m=1

and this completes the proof.
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TEOPHUS 3KCTPEMAJIBHBIX 3AJAY
¥ TEOPHUA NPUBJIVXKEHUI

B.M. THXOMHUPOB
MI'Y, Mexuam, Mocxea 117234, CCCP

1. IlocTaHOBKH HEKOTOPHIX IKCTPEMANLHBIX 3aqaq
TEOPHH NMPHOTHIKeHMH

TlocraroBxy SKCTPEMAIBHEIX 2a/{aY CONPOBOMK/IAIOT BCIO MCTOPHIO TEOPHY IpHG/H-
wemmi. Eme B 18 Bexe Jleyxaupp Haluelsl, BEIPpBKASACH COBDEMEHHBIM SI3BIKOM,
TIONMHOMBI HAMMEHES YKIJOHMIONIHECS OT HyNA B METPHKE NPOCTPAHCIBA
Zy([—1, 1]). Toumee ropops, (GaKTHIECKH OH PaspeIH CIEAYIOMYIO NPoGiemy
muarmusanun (1):

1 r 2
o F2@ = § (e Y =t dt = 174 pu®llrigosy > inf.

-1 k=1

Tlonyumsimmecss B pesynerare pemerus samauy (1) MONMHOMBI MMEIOT BHX:
rld

— (22—

@t arr G

OHF TIPOMOPIMOHANBHEI HOMHHOMAM P,(f), Ha3BaHHEIX nosuHomamu Jlescandpa.

UeGpImes pemmi aHATOTMYHYIO 3amauy B XBYX Apyrsx merpumkax: C([—1, 1])

u Z,([-1, 1]). Pewenner 3amauu

1) T.2(0) = 7

@ Jreo(x) = max

r
"+ yxktk_1| = [t"+p(®)llcg-1,1p = inf
te[—1,1] =

ABILLOTCA nosunomsr Yebruuesa: T,,(t) = 27D cos(rarccost), a pernreHuen sa-
Taun

1 r
€) I = § e+ Zxkt"'lldt = [["+p.(Dllz,q-1,1p ~ inf

() e X — nexcoropoe Muoxectso, f: X ~R — dymxamonan 5a em, a C < X — nofi-
MHOXKECTBO X, HASKIBAEMOE OTDAHIMEHHEM, TO 3a]la4a OTHICKAHIIY MEHuMyMa f Ha C 0G0sHavaeTcst
nanee f—inf; x € C.

18 Banach Center t. 1V [273]
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