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Introduction

We show that the dual of the weighted Hardy spéce H} can be identified with the
class BMO,, of functions of weighted bounded mean oscillation. If the weight function
w is identically 1, this is C. L. Fefferman’s result [3].

‘We restrict attention to the unit disc, where matters are as simple as possible.
The proof can be extended to the half-plane, but there are several technical problems
involved in extending it to the upper half-space in higher dimensions. The half-
plane case has also been studied extensively by J. G. Cuerva in [2]. His method is
different from ours; it is based on the “atomic” decomposition of HL, while ours
follows the basic outline of Fefferman’s original proof.

Let w(x) be periodic (with period 2r), non-negative, and integrable over (—, =),

and let m,,(E) denote the w-measure of a set E: my(E) = S w(x)dx. We say that
£

w satisfies condition A if, given ¢ > 0, there exists 8 > 0 such that if E is a measur-
able subset of an interval I and |E| < é|I|, then m,(E) < em,(I). (See, e.g., [1].)

A function F(2), z = re', analytic in |z| < 1is said to belong to HJ if the ex-
pression

T

IFllge = sup § IFCewt)dx

is finite. It is known (see [4], p. 118) that an analytic F belongs to Hy, W € A,
if and only if its non-tangential maximal function N(F)(x) belongs to L}, where

kg

L= {f: 171l = § 1r@mear < +°°}-"

-1

Moreover, |]°F|] gy and [|[N(F)|3 are equivalent norms. See also [10].
To state our main result, we need a boundary value characterization of H3,.
We assume that X

Ay o wH(x) < ew(x),

[293]


GUEST


294 R. L. WHEEDEN
where w#* is the Hardy-Littlewood maximal function of w. This is a strong condition
compared to A, but in some sense, it is natural for boundary value considerations.
In fact, we need a condition which insures that every function in L} has a Poisson
integral. A, is such a condition, since if w satisfies it, then

L S wx)dx < cw(x);

27

thus, w is bounded below by a positive constant, and L} = L'(—m, ). On the
other hand, if we let w(x) = |x|%, « > 0, and f(x) = [x|™%, |x] < 7, then w satisfies
A, (in fact, in the terminology of [6], it satisfies A, for a+1 < p < o) and fe L},
but f¢ L' (—m, 7).

If w satisfies A, we also know that the conjugate function of f; defined by

foy = - % lim

[

f(x+t)— cot— dt,

e<|tf<T

exists a.e. (in the pointwise sense) for any fe L}. (See [5].)

The boundary value characterization of H} is given in the following theorem.
We use the notations Pf = (Pf)(r, x) and Qf = (Qf)(r, x) for the Poisson and
conjugate Poisson integrals of f, resp.

THEOREM 1. Suppose that w satisfies A, .

(i) Let Fe HY, let u and v be its real and imaginary parts, and let ©(0, 0) = 0.
Then thereis a functzon fe Ll suchthar f ell,u=Pfandv=Qf =P f Moreover,
there exists ¢ > O such that
1)) e HIF Ny < 0 e+ 11 Ny < cllFllgg.

(i) LetfeLs.If. ‘Fe LY, then the function F = Pf+iQ f belongs to HY, . Moreover,
Of = Pf, and (1) holds.

1t follows that we can identify HL, w e A,, with

{(£, ) £, feLi}
Moreover, the norm defined: by
WA sy = 1A PNl = 11l + 111

is equivalent to the usual H3, norm. We will see later that {(f, P fis a real trig-
onometric polynomial} is dense in HY.

We say (see [8]) that a real-valued periodic b(x) belongs to' BMO,, (weighted
BMO) if b € L'(—=, =) and there exists ¢ > 0 such that

S[b(x)—b,]dx < emy(), b= e Sb(x)dx,
b

for any interval . (This condition for all 7 < (-, ) implies it for all L) If b &
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BMOW,A we set

l1Bl1 = Slb(x) bild.

(1)

Then [{b]|« is a semi-norm. One can obtain a norm by replacing 118115 Y 1Bl x+ 1Bl s,
or by identifying functions which differ by a constant.

The next result gives the sense in which BMO,, is the dual of Hi.

THEOREM 2. Let w satisfy A,.

(@) If ! is a real-valued continuous linear functional on H1 s there exists b e BMO,,
such that

§ fbdx

-1

If, f) =

for all real trigonometric polynomials f.
(i) There is a constant ¢ such that

|§ o] < et (11, § 0]

Jor all real trigonometric polynomials f and all b € BMO,,.
As a corollary of the proof, we obtain the following interesting characterizations
of BMO,,.
THEOREM 3. Let we A, .
] d)(i) Tliji general element b of (BMO), has the form b= w+(d,w)",
P eL™.

(ii) An integrable b belongs to (BMO),, if and only if there is a constant ¢ such
that for every interval I, |I| < 1,

§§ a=nIv@n)peramrdray < om, @),
B(I)

where B(I) = {re"™: 1—-r < |1}, xeI}.

In the proofs, we will need several facts about weight functions, most of which
will be listed as they arise. Here, we note that if w satisfies A, then it also satisfies
an inequality in which the roles of w-measure and Lebesgue measure are reversed:
given & > 0, thereis a § > 0 such that if E < I'and m,,(E) < ém,,(I), then |E| < &|I].
Moreover, there exists p, 1 < p < 0, such that

(1
1}

(See [7], [1].) The case p = 2 will be especially important. Note that w satlsﬁes A,
if and only if w™* does. Also, if b e BMO,, and w satisfies A,, then

i et
(Ap) Swdx)(I;ISw ""’dx) <e, l<p<oo.
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§ 15—br2w=2ax < cllblzm (D),
) ,

with ¢ independent of » and 7 (see [8], Theorem 4).

We will use the same letter ¢ to denote dlﬁ'erent constants which may depend
on w, but not on f, b, or I. We also use I?, 1'< p < o0, to denote ordinary
(w=1) I(~=,n).

1. Proof of Theorem 1

The proof of Theorem 1 follows standard lines. The easiest way to show part (i)
is to note that if w satisfies A, then (since w(x) > ¢ > 0) HJ} is actually contained
in the classical Hardy space H*. Therefore, by well-known results (see [1 1D)ifFeH},
then F has (radial) boundary values f+ig a.e.:
limF(rei") = lim[u(re"")+iv(rei")] = f(x)+ig(x) a.e.

(See also [5].) Since the non-tangential maximal function of F, N(F)(x), belongs
to Ly, and since [u(re™)), [v(re™)] < N(F)(x), it follows by dominated convergence
that f, g € L},. Moreover, if we convolve « and v with the Poisson kernel and use the
maximum principle for harmomc functions, it is a simple matter to see that u = Pf,
v = Pg.

Thus, F = Pf+iQf, since both sides are analytic in |z| < 1, have equal real
parts there, and have equal imaginary parts at the ongm Thus, Pg = Qf. In parti-
cular, takmg Iimits at the boundary, we have g = f a.e., which shows that f elLi,
v=Ff=0f.

To complete the proof of (i), we must verify that || / Hzg +11 7l 11 is equivalent
to [|F||g1. The inequality
’ Ay +1 fHle < 2HFI|H,;-

is an immediate corollary of the convergence of Fto f+ zf in L norm. On the other
hand,

L3

e ooy dx = S (N6 < S | O (P (re™) .

-T

Since (Pw) (rg“) ‘ew*(x) and w satxsﬁes A, we obtain

‘ S lure™)w(x)dx < ) f ] s

A similar relation holds for v and £, so that

@ [1F gy = sup S!u(re"‘)+w(re’*)rw(x)dx < eIl fllgg +1Fllzg)-

To prove (ii), suppose that f, f €L}, and consider the ana]ytlc function F
= Pf+iQf. The easiest way to proceed is to.note that f and f belong to L*, since
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w(x) > ¢ > 0. Hence, by the remarks at the bottom of p. 285 of [1 1], Vol. 1, we see

that Fe H*. This implies (by part (i), for example) that Qf = Pf. It now follows

exactly as in the proof of (2) that F ¢ Hy,. The remaining part of (if) follows from @.
Before going on to Theorem 2, we prove a result mentioned in the introduction.
LeMMA 1. If w satts;ﬁes Al, then

{(fs f): fis a real trlgonometrlc polynomial}
is dense in HY.

v .
Z ¢,z" for N to be

chosen. By Theorem 1, the H, norm of F(2)—p(rz), 0 < r < 1 is eqmva.lent to
the L} norm of F(e™™)—p(re'™), which is bounded by

1F(e™) — F(re™)|| 24+ || F(re™)— p(re™)||z}.

The first of these terms tends to zero as » — 1. The second, for fixed 7, is arbitrarily
small when N is large, since p converges uniformly to F on compact subsets of |z] < 1.
It follows that there exist N and r so that F(z)—p(rz) has arbitrarily small H} norm,
which completes the proof.

Proof. Let Fe HL, F(z) = Z 2" |2 < 1, and let p(z) =

2. Lemmas for Theorem 2

Aside from several facts which are already in print, we will need three lemmas to
prove Theorem 2. These are given below.

A weight w is said to satisfy condition B, if there is a constant ¢ such that for
every interval I,

©

(] my(I)
(BZ) —Sw w(x) 11‘2

< ¢ ,
+e—x)? I

where x; is the center of I. This condition was introduced in [5],-(2.3), and holds
if w satisfies A; (in fact, A, is enough). If w satisfies B, and I is the interval with
center x and length 1—r, 0 < r < 1, it follows that

S w(z)dt.

[x—tj<1~r

(©)] @Pw)(re

Note also that if af, « > 0, denotes the interval concentric with I whose length is
a|I], then, by restricting integration in (B,) to 2I, we see that any w satisfying B,
also satisfies the doubling condition

) m,QI) < em,(I).

LeMMA 2. If w satisfies B,, there is a constant c such that for any b € BMO,,
and any I,
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+0 .
@ | BBl gy ¢ < el
where by = § b(x)dx/|l, and xy is the center of I

Proof. Fix I, and let 8 denote the expression on the left in (4). Then f is the
sum of similar integrals extended over J and Ry = 2F[—2¥-1] k= 1,2, .... There-
fore,

<]

< lg [b—-b,]dx—i—cz e S 16— byl dx.
I £ 22H1] 4
= 2T
For k > 1, we have
k
§ b—brdx < | 16=bassldx+ D 2411 1Bayr—basss].
27 2 =1
Since
1
1b20r—byi-y} = PR ;S; (b—b21)dx
A §
2 S 2[12]1%
< 557 - < ]
2][[| kA Ib bz-’lidx 2]][] mw(ZI);
we obtain

k
S [B—bydx < 2]1b||*[mw(2"I)+2"Z~21me(211)], k1.

2r J=1
Also,Sib bildx < (bl mw(D), so that

bll+
B < CIiI]” [ my(D)+ Z 72k mw(zk[)'{‘ Z ;k 2_,—217’”“'(211)]'

j=1
Changing the order of summation in the last term on the right, we get

Z ik e (2¥D).

clibll«
<7

Since w satisfies B,,

+ 000

emy (1) > _S W) e =S + i

k=1 Rg

> [mw(1)+ Z ';me(Rk)]-
=1
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But m,(Ry) is comparable to m,(2I) by the doubling condition, so that my(I)

> c;‘o m,(21)[22*. Therefore, # < cllbll«m, (D)/|I], as claimed.

If w satisfies A; (even A), then logw is of bounded mean oscillation (in the
usual unweighted sense) — see [5], Lemma 5. Let P(logw)(r, x) denote its Poisson
integral, and let V and A denote the gradient and Laplace operators, espectively.

LemMA 3. If w satisfies A, , there is a constant ¢ such that for0 <r <1,

@) (1-=-n|IVPlogw)(r,x)| < ¢
1
1—r S

[x—tl<1—r

(ll) c—leP(lo;w)(r,x) <

W(t)dt < ceP(logw)(r.x).

Proof. Part (i) is a corollary of the fact that logw is of bounded mean oscillation ;
it follows from Theorem 3 (iii) of [3] by using the mean-value property of harmonic
functions.

To prove (ii), observe by Jensen’s inequality for convex functions and (3) that

exp (Plogm)(r, ) € (PW(r, ) < — w(t)ds.
jx—tl<1l-r
Applying this to w~ (which also satisfies A,), we obtain
-1
exp (— Plogw)(r, x) < = wTi(t)dt < cl( i 1 w(t)dt) .
pe—tl<1—r A P

This proves (ii).
Although we shall not need the result, it is interesting to note that Lemma 3
is true if w satisfies A,. In fact, w then satisfies A, forsomep, 1 < p < 0. f p< 2

1
the fact that any A, function satisfies A, gives (i). If p > 2, then w™ P=T

satisfies A,., p’ = pll— < 2, which implies that exp {—p—ir(Plogw)(r, x)}
1
S w~ P=7 (¢)dt are equivalent. Part

[x—t]<1~r

(= exp P(logw~ P—1)(r x)) and —— 1 .

(ii) follows by applying condition A,.
LeMMA 4. Let f be a real trigonometric polynomial, and let be L'. If either
T ki
§ fdx=00r § bdx=0, then
-7

b 1 n
® | § rpax| < cf § @-rv@NE, DIV, Dldrds,
-7 0—n
with ¢ independent of f and b.
Proof. If b € L2, then (5) is derived in the course of proving (3.21) in Chapter 14
of [11]: see specifically p. 215, line 11. If b € L, choose by € L? such that [b] < [B]
and b, — b in L. Then (5) holds for each b, and since fby —~ fb in L!, it is enough
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to show that the expression on the right side of (5) is the limit of the same expression
with b replaced by b;. We shall use the dominated convergence theorem. Note that
[V(Pbg)| converges pointwise to |V(Pb)|, and that (1 —m)|V(PBY)| < cP(b))
< cP(]b]). Since |V(Pf)| is bounded and

12w 1 2n

| § pagDarax < [ § 1e1ax] ar = 11, < +oo,

[0 0 0
the result follows.

3. Proof of Theorem 2

The proof of part (i) of Theorem 2, which is relatively short, is as follows. Let / be
a real-valued continuous linear functional on H}, and let w satisfy A, . By Theorem 1,
H}, can be identified with a subset of the direct sum

LvoL, = {(£,8): Iflih+lgllzy < +oo}.
We first claim that H, is a closed subset of LL@LL. To check this, suppose that
(fs» /i) € HY, and that fv and £ converge in L, norm to f and g, resp. Then both
Jfand g belong to L}, and we only need to show that g= ;’ a.e. However, since
w satisfies A, ﬂ converges in w-measure to f‘: in fact, by Theorem 1(d) of [5],

my{| fi—f1 > a} sf S | fi—flwdx, o>0.

-1

Hence, since f; also converges in w-measure to g, the claim follows.

By the Hahn-Banach theorem, / has an extension /to a continuous linear func-
tional on Ly, @L},. Hence, there exist ¢, , ¢, € L such that

Ed

1f,8) = § (fBs+gdwdr, f,gell.
Thus, if (f,f) e HI,

k17

©) 16D = § b+ Tbywa.

-7
We next observe that if f is any trigonometric polynomial, then

k3 ™

§ Foawdx = — § figw)” ax.

-t -7
In fact, since w (and so ¢ 2w) belongs to L for some p > 1 (see [6]), this is a well-
known corollary of the boundedness of the conjugate function on L?, p > 1. Hence,
by (6), if f'is a polynomial,

1D = § f(@iw— (62w ) dx.
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Letb = ¢, w—(¢,w)". Clearly, §; w e BMO,, since it is a bounded function times w.
Moreover, (¢.w)” e BMO,, by Theorem 1 of [8]. Hence, b € BMO,,, which completes
the proof of part (i).
k4
1
To prove part (i), let b € BMO,., and write b = by-+b, where by = - § bax.
Then -n

| § 7Bodx| < 11 7l1zibal < el 71124160l < cllfllm3lbol,
if w satisfies A; (since then w(x) > ¢ > 0). It follows that we may assume b has
integral zero. We may also assume that ||b}], = 1. By (5),
m | § pax] < ¢ §§ a-rmive@niveen)aras.
-7 |z]<1

The part of the integral on the right with r < 1/2 is clearly bounded by a multiple
of || f|lgd, since in this range |V(Pf)| < c||f]iz+ and |V(Pb)| < ¢||b]lr:, while
Hflle < ell flims and |IBlly = Ib—bollzr < emy,(—=, =) (recall that [[bjl, = 1).

Let D denote the part of the integral on the right of (7) with 1/2 < r < 1. To
estimate D, let I'y(x), 0 < & < 1/2, denote the 45° triangle with vertex e'*, altitude
h and axis along the radius from z = 0 to z = %, Let

1/2
h) = suplh: 0 < k< 172, ( {§ V@B, OFrdras)” < e,wio)},
Tn(x)
where ¢, is a constant to be chosen. The theorem will follow by showing that D is
less than a constant times

® §[ 5§ venivesards)dx.
=7 Ty
In fact, (8) is at most
2§ [ §§ wenvenyraras)ax

=T L@

<2 § [ 1§ wenpraa]™| §§ wv@orrarao]” ax

&)
=7 L, (8 Ty @

k3

< 2¢ S AN w(x)dx,

-7

where (Af)(x) is the Lusin area integral of f. By [4] or [9], D is therefore bounded
by a constant times || f||a}, which is the desired result.
To show that D is at most a constant times (8), note that (8) equals

i\ v@MvEDIE, ol dras,

1/2<|z{<1

20 Banach Center t. IV
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where E, = {x: re® € I'lix)(x)}. We will be done if we show that |E, ¢| > c(1-r),
1/2 < r < 1. This follows from showing that for everyre®®, 1/2 < r < 1,A(x) » 1-r
for x is a subset of I = {x: [x—6] < 1—r} whose measure exceeds a multiple
(independent of re’) of 1—r. We must thus show that if ¢, is large enough and J
is an interval of length at most 1, then ’

© fxer (r §§ )[V(Pb)[zrdrdﬂ)m < eon@) > 0.
. I

Fix 1, let I'(x) = Iy (x), and let E be the complementary subset of I:

E= {xe I SS[V(Pb)izrdrdO wi(x) 2 2 w(x)}
)

Integrating over E and applying Fubini’s theorem, we obtain

(10) 2my(E) < § (1§ vPB)2rdras) w1 ()dx
E

I(x)
<{fvenr( |
o B |x—6/<1-r
where B is the “box” {re"’: 1—r < 2|I|, 6 e 2I}. The strategy is to find ‘a constant
¢ independent of 7 such that the last integral is majorized by cm,,(I). This will give
¢}m,(E) < em,,(I). By then choosing ¢, large and using A, (in the form mentioned
near the end of the Introduction), we get |E| < 1|I], thereby proving (9).
To show that (10) is majorized by cm,,(I), let J = 41, and write

w=t(x) dx) rdr db,

b

V@R, 0) = § Be)-8VP(,6-nar={+ |

-7 J (-m,m)-J

= ﬁ1+ﬂ23

where P(r, t) is the Poissoh kerﬂel. We will consider the parts of (10) arising from
f1 and B, separately. The part from B, is relatively simple. If 6 € 27,

dt my(D)

Ba(r,) < ¢ S 1b(t) —by] G=OE <CT’

1ET .
by Lemma 2 (|||l = 1) and the doubling condition. The corresponding part of
(10) is thus majorized by a multiple of

]

B |x—6l<1-r

(1-ndr < em,(D),

2
w1 (x) dx)rdrde <D 0
1-21

1®
since w satisfies A,.

Note that 8,(r, 6) = V(Pb,)(r, 0), where b; = (b—b;)y;. Hence, by changing
the order of integration, we see that the part of (10) corresponding to f; is at most

L3

) weax,

icm
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where Ab, is the Lusin area integral of b,. Since w(x)~1! satisfies A,, it follows from
[4] that the last integral is bounded by

T

c S b)) wix)"tdx.

—-T

Observe that b, € L2-:; in fact,

§ 2209wt dx = [ B bW 2dx < emu(@)  (I81], = 1)

-7 J

(see the Introduction). Combining estimates and using the doubling condition, we
obtain the desired bound. This completes the proof of Theorem 2.

The proof of Theorem 3 follows by examination of that of Theorem 2 (cf. [3]).
In particular, for the sufficiency of part (ii), note that the proof of Theorem 2 (ii)
gives {Sfbdx| < ¢|l f |z for polynomials f if b is any function in L* for which (10)
is majorized by ¢m,,(I). Then, by Lemma 3, note that (10) is essentially the double
integral in part (if) of Theorem 3.
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