

where $G = \omega(1)$; in particular, the calculation of the best constant G in inequality (3.10) may always be reduced to the problem of the best approximation in $L(0,\infty)$ of the function θ by functions $J_{*,1}^* \zeta$.

References

- [1] [Н. Ватеман and А. Егдејуі] Г. Бейтмен, А. Эрдейи, Таблицы интегральных преобразований, Наука, Москва 1970.
- [2] [W. N. Gabushin] В. Н. Габушин, Неравенства для норм функции и ее произвольных в метриках L_p, Матем. заметки 1 (3) (1967), pp. 291-298.
- [3] —,Наилучшее приближение функционалов на некоторых множествах, ibid. 8 (5) (1970), pp. 551-562.
- [4] [S. P. Geisberg] С. П. Гейсберг, Обобщение неравенства Адамара. Исследования по некоторым проблемам конструктивной теории функций, Сб. науч. тр. ЛМИ 50, рр. 42-54, Ленинград 1965.
- [5] —, Дробные производные ограниченных на оси функций, Изв. ВУЗов, Математика 11 (1968), pp. 51-69.
- [6] J. Hadamard, Sur le module maximum d'un fonction et de ses dérivées, Soc. Math. France, Comptes rendus des Séances 41 (1914), pp. 68-72.
- [7] G. H. Hardy and J. E. Littlewood, Contribution to the arithmetic theory of series, Proc. London Math. Soc. (2) 11 (1912), pp. 411-478.
- [8] [А. N. Kolmogorov] А. Н. Колмогоров, О неравенствах между верхними гранями последовательных производных производьной функции на бесконечном интервале, Уч. зап. Моск. Ун-та 30, Математика кн. 3 (1939), pp. 3-16.
- [9] E. Landau, Einige Ungleichungen fur zweimal differentierbare Funktionen, Proc. London Math. Soc. (2) 13 (1913), pp. 43-49.
- [10] [А. Р. Matorin] А. П. Маторин, О неравенствах между наибольшими значениями абсолютных величин функции и ее производных на полупрямой, Укр. мат. журн. (1955), pp. 262-266.
- [11] L. Neder, Abschätzungen fur die Ableitungen einer reellen Funktion eines reellen Argumentes, Math. Z. 31 (1930), pp. 356-365.
- [12] I. J. Schoenberg and A. Cavaretta, Solution of Landau's problem concerning higher derivatives on the halfline, Proc. of Conference on Approximation theory, Varna 1970, pp. 297– 308. Sofia 1972.
- [13] [S. B. Stechkin] С.Б. Стечкин, Наилучшее приближение линейных операторов, Матем. заметки 1 (2) (1967), pp. 137-148.
- [14] —, О перавенствах между верхними гранями производных произвольной функции на полупрямой, ibid. 1 (6) (1967), pp. 665-674.
- [15] [E. Titchmarsh] Е. Титмар III, Введение в теорию интегралов Фурье, Гостехиздат, Москва-Ленинград 1948.
- [16] [А. Zygmund] А. Зигмунд, Тригонометрические ряды, ГОНТИ, Москва-Ленинград 1939.

Presented to the Semester Approximation Theory September 17-December 17, 1975 APPROXIMATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 4
PWN-POLISH SCIENTIFIC PUBLISHERS
WARSAW 1979

ON THE UNIFORM CONTINUITY OF METRIC PROJECTION

V. I. BERDYSHEV

Institute of Mathematics and Mechanics, Sverdlovsk, U.S.S.R.

Let X denote a normed space, M a convex set in X, for $x \in X$, $xM = \inf\{||x-y||: y \in M\}$ the distance from x to M, $x_M = \{y \in M: ||x-y|| = xM\}$ the set of the elements from M of the best approximation for x. In what follows, M is assumed to be an existence set [9], i.e. x_M is nonempty for any $x \in X$. A map $x \to x_M$ (setvalued, in general) is called a metric projection. It is well known that the metric projection is single-valued for any existence set in the strictly convex space.

In Section 1 there is considered a problem of estimating $||x_M - y_M||$ from above via ||x - y|| and geometric characteristics of X under the condition of strict convexity. Section 2 is devoted to the metric projection from $L(S, \mu)$ onto its finite-dimensional subspace. The main results are contained in Theorems 3 and 4.

1

Further we will denote by θ the zero of the space X and $V(x, r) = \{y \in X: ||x-y|| \le r\}$ (r > 0), $V = V(\theta, 1)$. Let $d(M) = \sup\{||x-y||: x, y \in M\}$ be the diameter of the set $M \subset X$. For a given set M contained in the plane $P \subset X$, we denote by s(M) the width of M with respect to P, namely

$$s(M) = s(M)_P = \inf \{ \sup_{x \in M-p} f(x) - \inf_{x \in M-p} f(x) : f \in (P-p)^*, ||f|| = 1 \},$$

where p is an element from P and $(P-p)^*$ is a conjugate space to (P-p). Assume [1]

(1)
$$\Omega(t) = \Omega(t)_{X} = \sup d(M \cap V) \quad (t \ge 0),$$

where the supremum is taken over all the hyperplanes $P \subset X$ such that $s(P \cap V)_P \leqslant t$. The function $\Omega(t)$ is nondecreasing and continuous in (0, 2].

Let us estimate $||x_M - y_M||$ by means of Ω in the case of a strictly convex X. LEMMA 1. Let $M \subset X$ be the convex existence set, $x^1, x^2 \notin M$, $||x_M^1 - x_M^2|| > 0$; then the inequalities

(2)
$$||x_M^1 - x_M^2|| \le ||x_L^1 - x_L^2||$$
, $x^i M - 2||x^1 - x^2|| \le x^i L \le x^i M$ $(i = 1, 2)$ hold for the line $L = \{(1 - \lambda)x_M^1 + \lambda x_M^2: |\lambda| < \infty\}$.

Proof. The first inequality and the inequalities $x^i L \le x^i M$ (i = 1, 2) were established in [1] (see also [10]). It is easily seen that the element $z \in [x^1, x^2]$ with

[35]

3*

the property $z_r \cap M \neq \emptyset$ exists. Then

$$x^2L\geqslant zL-||z-x^2||\geqslant zM-||z-x^2||\geqslant x^2M-2||z-x^2||\geqslant x^2M-2||x^1-x^2||. \ \, \blacksquare$$

THEOREM 1. If X is a strictly convex space, and M is a convex existence set in X, $x, y \in X$, ||x-y|| = t, xM = r, r > 2t, then

$$(3) ||x_M - y_M|| \leq \min \left\{ r\Omega\left(\frac{2t}{r - 2t}\right) + 2t, 2(r + t) \right\}.$$

Proof. The equality $||x_M - y_M|| \le 2(xM + ||x - y||)$ is obvious. In [1], Corollary, p. 802, it is shown that the inequality

$$(4) ||x_L - y_L|| \le xL \cdot \Omega \left(2 \frac{||x - y||}{xL}\right) + 2||x - y||$$

holds for line L and $x, y \in L$ in a strictly convex space. Assuming $L = \{(1 - \lambda)x_M + + \lambda y_M : |\lambda| < \infty\}$ and using (4), (2), we obtain (3).

If M is an existence plane in X, then under the conditions of Lemma 1, we have $x_L^i = x_M^i$ (i = 1, 2) and, consequently, the inequality

(5)
$$||x_M^1 - x_M^2|| \le x^1 M \cdot \Omega \left(2 \frac{||x^1 - x^2||}{x^1 M} \right) + 2 ||x^1 - x^2||,$$

for $x^1, x^2 \notin M$.

Let us recall the definitions of

(6)
$$\varepsilon(\alpha) = \sup\{||x^1 - x^2||: ||x^1|| = ||x^2|| = 1, \ 1 - ||x^1 - x^2||/2 \le \alpha\},\ 0 < \alpha < 1\}$$

an inverse function of the convexity modulus [7] of the space X,

(7)
$$\varrho(\tau) = \frac{1}{2} \sup\{||x+y|| + ||x-y|| - 2 \colon ||x|| = 1, \ ||y|| = \tau\}, \quad \tau \geqslant 0,$$

the smoothness modulus of X [8]. In [2] another smoothness modulus was introduced, namely

(8)
$$\varrho_1(\tau) = \sup \left\{ 1 - \frac{||x^1 + x^2||}{2} : ||x^1|| = ||x^2|| = 1, ||x^1 - x^2|| \le \tau \right\}; \\ 0 \le \tau \le 2,$$

and it was proven, in particular, that

(9)
$$\varrho_1(\tau) \leqslant \varrho(\tau/(2-\tau)), \quad 0 \leqslant \tau < 2.$$

A space X is called *uniformly convex* if $\varepsilon(\alpha) \xrightarrow[\alpha \to 0]{} 0$ [7]. The following theorem is valid:

THEOREM (B. Björnestål [5]). Let X be a uniformly convex space, and P a closed subspace in X, $x^0 \in X$, $x^0P = 1$; then there exists a number t_0 dependent on X only and such that

(10)
$$\sup_{||x^{0}-x|| \leq t} ||x_{P}^{0}-x_{P}|| \leq 2\varepsilon (2\varrho(6t)).$$

The estimate (10) is of interest because in the case of L_p ($1) spaces it cannot be improved with respect to the order of <math>t, t \to 0$, and the class of closed subspaces $P \in L_p$ [6].

Using (4), we will come to a similar estimate for a convex existence set.

THEOREM 2. The following inequality holds:

(11)
$$\Omega(t) \leq \varepsilon (2\varrho_1(t)) \leq \varepsilon (2\varrho(t/(2-t))), \quad 0 < t < 1.$$

Proof. For any $\gamma > 0$ there exists a plane $P \subset X$ such that $s(V \cap P) \leq t$, $d(V \cap P) \geq \Omega(t) - \gamma$. Let us have $x_1, x_2 \in V \cap P$ such that $||x_1 - x_2|| \geq d(V \cap P) - \gamma$ and write $x = (x_1 + x_2)/2$, x' = x/||x||; then

(12)
$$\Omega(t) \leqslant ||x_1 - x_2|| + 2\gamma \leqslant \varepsilon(||x - x'||) + 2\gamma.$$

Owing to $s(V \cap P) \le t$ there exist $v_1, v_2 \in P$ satisfying the conditions $||v_1|| = ||v_2|| = 1, \ ||v_1 - v_2|| \le t, \ x \in [v_1, v_2].$ If $v = (v_1 + v_2)/2, \ v' = v/||v||$, then

$$(13) ||v-v'|| \leq \varrho_1(t).$$

Now we estimate ||x-x'|| by ||v-v'||. Let $w, w \in [v_1, v_2]$, be such that the segments [x', w], [v', v] are parallel. The element w exists because $||v_1-v_2|| \le t < 1$. As can easily be seen,

$$||x'-w|| \le 2||v-v'||, \qquad \frac{||x'-x||}{||x'-w||} = \frac{||x||}{||v||} = \frac{1-||x'-x||}{1-||v-v'||};$$

thus $||x-x'|| \le 2||v-v'||/(1+||v-v'||)$. The last inequality and (12), (13) lead to $\Omega(t) \le \varepsilon(2\varrho_1(t))$. Using (9), we complete the proof of the theorem. From (3) and (11) follows

THEOREM 3. Let X be a strictly convex space, M a convex existence set in X and r > 0, $0 < t < \min\{1, r/3\}$; then

(14)
$$\sup\{||x_M - y_M||: xM = r, ||x - y|| \leq t\} \leq r\Omega(2t/(r-2t)) + 2t \\ \leq r\varepsilon(2\varrho_1(2t(r-2t))) + 2t \\ \leq r\varepsilon(2\varrho(t/(r-3t))) + 2t.$$

2

In what follows we will deal with a space $L(S, \mu)$ of real functions integrable on the space (S, μ) with nonnegative measure μ . For $f \in L(S, \mu)$ denote as usual $||f|| = \int_{S} |f(t)| d\mu$. We will formulate several known results. Let P be a subspace in $L(S, \mu)$ (possibly infinite-dimensional). For $f \in L(S, \mu)$, $x \in P$ write

$$\Delta = f - x$$
, $Z = \{t \in S: f(t) = x(t)\}.$

Theorem [11]. An element $x \in P$ is the best approximation element for $f \in L(S, \mu)$ iff

(15)
$$\left| \int_{S} y(t) \operatorname{sing} \Delta(t) d\mu \right| \leq \int_{Z} |y(t)| d\mu \quad \forall y \in P.$$

THEOREM [3]. The best approximation element $x \in P$ for $f \in L(S, \mu)$ is unique iff for any $y \in P$, $y \neq \emptyset$, at least one of the following conditions is true:

(16)
$$\mu\{t \in S \setminus Z : \operatorname{sign} \Delta(t) = \operatorname{sign} y(t), |y(t)| > |\Delta(t)|\} > 0,$$

(17)
$$\int_{S} y(t) \operatorname{sign} \Delta(t) d\mu < \int_{Z} |y(t)| d\mu.$$

THEOREM [12]. If a space (S, μ) has no atoms and P is a finite-dimensional subspace of $L(S, \mu)$, then there exists a $\psi \in L(S, \mu)$ such that

$$|\psi(t)| = 1 \quad \forall t \in S, \quad \int\limits_S y(t) \psi(t) \, d\mu = 0 \quad \forall y \in P.$$

In what follows all the subsets from S in question are supposed to be measureable, and the symbol \forall' means "for almost all".

LEMMA 2. Let P be a finite-dimensional subspace in $L(S, \mu)$. For any $\gamma > 0$ there exist $\varepsilon > 0$ and a set $e \subset S$, $\mu e > 0$, such that

(19)
$$(f \in P, ||f|| < \varepsilon) \Rightarrow (|f(t)| < \gamma \ \forall t \in e).$$

Proof. The proof is evident.

LEMMA 3. If the measure μ has no atoms and P is a finite-dimensional subspace of $L(S,\mu)$, then for any $\eta>0$ there exists a set $E=E_{\eta}\subset S,\ 0<\mu E\leqslant \eta$ and a function $\psi\in L(E,\mu),\ 0<\psi(t)<1\ \forall t\in E,$ such that

(20)
$$(\varphi \in P, \ \varphi(t) \leqslant \psi(t) \ \forall' t \in E) \Rightarrow (\varphi(t) \leqslant 0 \ \forall' t \in S).$$

Proof. It is sufficient to verify (20) for $\varphi \in P$, $||\varphi|| \leq 1$. The set

$$Q_m = \left\{ f \in P \colon ||f|| \leqslant 1, \int_{\{t \in S \colon (t) > 0\}} f(t) d\mu \geqslant 1/m \right\} \quad (m = 1, 2, ...)$$

is compact. For every $f \in Q_m$ there exists a number $0 < \gamma_f < 1$ with the property $\mu\{t \in S: f(t) \ge \gamma_f\} > 0$. Using Lemma 2, we find a number $\varepsilon_f > 0$ and a set $e_f \subset \{t \in S: f(t) \ge \gamma_f\}$ such that $\mu e_f > 0$ and

(21)
$$(\varphi \in P, ||f-\varphi|| < \varepsilon_f) \Rightarrow (\varphi(t) > f(t) - \gamma_f/2 \ge \gamma_f/2 \quad \forall t \in e_f).$$

Thus Q_m is covered with the sets $V(f, \varepsilon_f) \subset P$, $(f \in Q_m)$. Owing to the compactness of Q_m , we can select a finite number of neighbourhoods $V_i^m = V(f_i^m, \varepsilon_{f_i^m})$, such that $Q_m \subset \bigcup_{i=1}^{N_m} V_i^m$. Write $\gamma_m = \min\{\gamma_{f_i^l} : i=1,\ldots,N^j; j=1,\ldots,m\}$. Since the measure μ is non-atomic, there exists a set $E_i^m \subset e_{f_i^m}, 0 < \mu E_i^m \le \gamma/N_m 2^{m+1}$ $(i=1,\ldots,N_m)$.

Let
$$E^m = \bigcup_{i=1}^{N_m} E_i^m$$
; then $0 < \mu E^m \le \eta/2^{m+1}$ and (see (21))

(22)
$$\forall \varphi \in Q_m \exists e \subset E^m \colon \mu e > 0, \quad \varphi(t) > \gamma_m \quad \forall t \in e.$$

Now we write

$$E = \bigcup_{m=1}^{\infty} E^m, \quad \psi(t) = \inf_{\{m: \ t \in E^m\}} \gamma_m \quad (t \in E);$$

then $\mu E \leq \eta$, $\mu \{t \in E: \psi(t) = 0\} = 0$. Thus for $\eta > 0$ we have built the set $E \subset S$, $0 < \mu E \leq \eta$ and the function $\psi \in L(E, \mu)$, $\psi(t) > 0 \ \forall t \in E$, such that

(23)
$$\forall \varphi \in \bigcup_{m=1}^{\infty} Q_m \exists e \in E: \ \mu e > 0, \quad \varphi(t) > \psi(t) \quad \forall t \in e.$$

Conditions (20) and (23) are equivalent.

THEOREM 4. Let (S, μ) be a space with a non-negative σ -finite measure without atoms, P a finite dimensional subspace of $L(S, \mu)$, and y_0 an element of P. For any $\varepsilon > 0$, $\gamma > 0$ there exist functions $f_1, f_2 \in L(S, \mu)$ such that $||f_1 - f_2|| < \varepsilon$, $||f_t|| \le ||y_0|| + \gamma$ (i = 1, 2); moreover, y_0 (coresp. θ) is the only best approximation element from P for f_1 (coresp. f_2).

Proof. Let the function $\psi \in L(S, \mu)$ satisfy conditions (18), $S^{\pm} = \{t \in S : \psi(t) = \pm 1\}$. The proof will be given for the case $\mu S^+ > 0$, $\mu S^- > 0$. If $\mu S^+ = 0$ or $\mu S^- = 0$, then the proof is nearly the same. As follows from Lemma 2, for $\eta > 0$ there exist sets $e^+ \subset S^+$, $e^- \subset S^-$ ($0 < \mu e^{\pm} < \eta/2$) and functions $\varphi^+ \in L(e^+, \mu)$, $\varphi^- \in L(e^-, \mu)$ such that $\varphi^+(t) > 0 \ \forall t \in e^+$, $\varphi^-(t) < 0 \ \forall t \in e^-$, and

$$\begin{aligned} \left(\varphi \in P,\, \varphi(t) \leqslant \varphi^+(t) \ \forall' t \in e^+\right) \Rightarrow \left(\varphi(t) \leqslant 0 \ \forall' t \in S^+\right), \\ \left(\varphi \in P,\, \varphi(t) \geqslant \varphi^-(t) \ \forall' t \in e^-\right) \Rightarrow \left(\varphi(t) \geqslant 0 \ \forall' t \in S^-\right). \end{aligned}$$

Let us have $q \in L(S, \mu)$, $q(t) > 0 \ \forall t \in S$, and denote $e = e^+ \cup e^-$,

$$f_1(t) = \begin{cases} \psi(t)(q(t) + |y_0(t)|), & t \in S \setminus e, \\ y_0(t) + \varphi^+(t), & t \in e^+, \\ y_0(t) + \varphi^-(t), & t \in e^-, \end{cases}$$

(25)

$$f_2(t) = \begin{cases} f_1(t), & t \in S \setminus e, \\ \varphi^+(t), & t \in e^+, \\ \varphi^-(t), & t \in e^-. \end{cases}$$

Then

(26)
$$\operatorname{sign}(f_1(t) - y_0(t)) = \operatorname{sign}f_2(t) = \psi(t).$$

As follows from (26) (see (15)), y_0 and θ are the elements of the best approximation according to f_1 and f_2 . To prove uniqueness we will verify the inequalities (for any $v \in P$, $v \neq \theta$)

(27)
$$\mu\{t \in S: \operatorname{sign}(f_1(t) - y_0(t)) = \operatorname{sign}y(t), |y(t)| > |f_1(t) - y_0(t)|\} > 0,$$

(28)
$$\mu\{t \in S : \operatorname{sign} f_2(t) = \operatorname{sign} y(t), |y(t)| > |f_2(t)|\} > 0.$$

If

$$(29) y(t) \leqslant 0 \ \forall' t \in S^+ \quad \text{and} \quad y(t) \geqslant 0 \quad \forall' t \in S^-,$$

then

$$\int_{S} y(t)\psi(t)d\mu = \int_{S^{+}} y(t)d\mu - \int_{S^{-}} y(t)d\mu < 0,$$

which contradicts (18). Hence at least one of the inequalities (29) is wrong. Let the first one be wrong. Then $\mu\{t \in S^+: y(t) > 0\} > 0$ and (see (24)) $\mu\{t \in e^+: y(t) > \varphi^+(t)\} > 0$. But it is exactly (27). Inequality (28) is verified as (27). Using (24) and the inequalities $\mu e < \eta$, $|\varphi^{\pm}(t)| < 1$ ($\forall t \in e^{\pm}$), we obtain $||f_i|| \le ||y_0|| + ||q|| + \eta$. Then $||f_1 - f_2|| \le \int_e |y_0(t)| \, d\mu$. Choosing the ||q|| and η small enough, one obtains inequalities $||f_i|| \le ||y_0|| + \gamma (i = 1, 2), \ ||f_1 - f_2|| \le \varepsilon$.

Remark. In the proof just given the uniqueness of the best approximation element is established by means of (16). The functions f_1 , f_2 can be constructed in such a way that the uniqueness can be proved by means of (17).

The Hausdorff distance between the sets A, B in the normed space is further denoted by h(A, B). The following assertion is straightforward consequence of Theorem 4.

THEOREM 5. Under the conditions of Theorem 4

(30)
$$\sup \{h(x_p, y_p): ||x-y|| \le t, ||x|| \le 1\} \ge 1 \quad \forall t > 0;$$

consequently the metric projection from the unit ball of the space $L(S, \mu)$ onto each finite-dimensional subspace $P \in L(S, \mu)$ is not uniformly continuous.

Remark. Theorems 4, 5 were proved in [3] for S = [a, b] in another way.

THEOREM 6. Let (S, μ) be a space with non-negative σ -finite measure μ , $n \in \{1, 2, ...\}$. Then the following conditions are equivalent:

- (a) there exists an n-dimensional subspace in $L(S, \mu)$ with a uniformly continuous metric projection.
 - (b) the space (S, μ) contains at least n atoms.

Proof. Suppose that (S,μ) contains only k atoms $\{t_i\}_{i=1}^k$, k < n. If P is an n-dimensional subspace in $L(S,\mu)$, then there exists a $y_0 \in P$; $||y_0|| = 1$, $y_0(t_i) = 0$, $i=1,\ldots,k$. Applying Theorem 4 to the space $(S \setminus \{t_i\}_i^k,\mu)$, we obtain the functions f^1 , $f^2 \in L$ $(S \setminus \{t_i\}_i^k,\mu)$ for any $\varepsilon > 0$. The functions $\overline{f^1}$: $\overline{f^1}(t) = f^1(t)$, $t \notin \{t_j\}_i^k$; $f^1(t) = 0$, $j = i, \ldots, k$, (i = 1, 2) have the properties $||\overline{f^1} - \overline{f^2}|| \le \varepsilon$, $\overline{f_F^1} = y_0$, $\overline{f_F^2} = 0$. So (a) implies (b). The converse implication is evident.

References

- V. I. Berdyshev, On the modulus of continuity of the operator of best approximation Mat. Zametki 15 (1974), pp. 797-808 (in Russian).
- [2] —, An estimate of continuity modulus of operator GRADF, ibid. 16, 2 (1974), pp. 349–360 (in Russian).
- [3] —, A metric projection onto finite dimensional subspace from C and L, ibid. 18, 4 (1975), pp. 473-488 (in Russian).
- [4] —, On the uniform continuity of the operator of best approximation, Proc. Conf. at Poznań 1972, Warszawa 1975, pp. 21–32.
- [5] B. O. Björnestål, Continuity of the metric projection operator, I, Royal Inst. of Technology, Stockholm 1975, 12 pp. (preprint).

- [6] —, Continuity of the metric projection operator, 3, Royal Inst. of Technology, Stockholm 1975, 27 pp. (preprint).
- [7] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40, 3 (1936), pp. 396-414.
- [8] M. M. Day, Normed linear spaces, Moscow 1961.
- [9] N. V. Efimov, S. B. Stechkin, Approximative compactness and Chebyshev sets, Dokl. Akad. Nauk SSSR 140 (1961), pp. 522-524 (in Russian).
- [10] R. Holmes and B. Kripke, Smoothness of approximation, Michigan Math. J. 15 (1968), pp. 225-248.
- [11] B. R. Kripke and T. J. Rivlin, Approximation in the metric of L¹(X, μ), Trans. Amer. Math. Soc. 119, 1 (1965), pp. 101-122.
- [12] R. R. Phelps, Uniqueness of Hahn-Banach extention and unique best approximation, ibid. 95, 2 (1960), pp. 238-255.

Presented to the Semester Approximation Theory September 17—December 17, 1975