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where G = w(1); in particular, the calculation of the best constant G in inequality
(3.10) may always be reduced to the problem of the best approximation in L(0,c0) of
the function 6 by functions J¥ , {.
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ON THE UNIFORM CONTINUITY OF METRIC PROJECTION

V. I BERDYSHEV
Institute of Mathematics and Mechanics, Sverdlovsk, U.S.S.R.

Let X denote a normed space, M a convex set in X, for x e X, xM = inf{{|x—y||:
¥y € M} the distance from x to M, x,y = {y € M: ||x—y|| = xM} the set of the
elements from M of the best approximation for x. In what follows, M is assumed
to be an existence set [9], i.e. xy is nonempty for any x € X. A map x — xp (set-
valued, in general) is called a metric projection. It is well known that the metric
projection is single-valued for any existence set in the strictly convex space.

In Section 1 there is considered a problem of estimating ||x) — yal}| from above
via [|x—y|| and geometric characteristics of X under the condition of strict con-
vexity. Section 2 is devoted to the metric projection from L(S, x) onto its finite-
dimensional subspace. The main results are contained in Theorems 3 and 4.

1
Further we will denote by 0 the zero of the space X and ¥ (x,r) = {y e X: |[x—yl|
<r} (r>0), V=V, 1). Let d(M) = sup{||x—y||: x,y € M} be the diameter of
the set M < X. For a given set M contained in the plane P < X, we denote by
s(M) the width of M with respect to P, namely
5(M) = s(M)p = inf{ sup f(x)— inf f(x): fe (P—p)* |Ifll =1},
xeM—p xeM-p

where p is an element from P and (P—p)* is a conjugate space to (P—p). Assume [1]
) 2(t) = Q@)y = supd(MnV) (=0)
where the supremum is taken over all the hyperplanes P < X such that s(PnV)p < ¢

The function £(¢) is nondecreasing and continuous in (0, 2].
Let us estimate [|xp— yx!| by means of 2 in the case of a strictly convex X.

LeMMA 1. Let M < X be the convex existence set, x*, x* ¢ M, ||x}—x%|| > 0;
then the inequalities
@ lxke—xEll < lIxi—xzll, *M=2lx'—x*| < ¥'L<
hold for the line L = {(1—Dxj+Ax: |A] < o0},

Proof. The first inequality and the inequalities x'L < x!M (i = 1,2) were
established in [1] (see also [10]). It is easily seen that the element z e [x?, x?] with

M (i=1,2)

3+ [35]
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the property zp N M # @ exists. Then
XL » zL—||z—x%|| 2 zM—|lz—x?|| 2 x*M—=2|lz—x?|| > x*M~2||x*—x?||. =
TrEOREM 1. If X is a strictly convex space, and M is a convex existence set in
X, x,yeX, |lx—=yll =1, xM =r, r>2t, then

2t
r—2t

€)] %= yml] < min{r.Q( )+21, 2(r+t)}.

Proof. The equality ||xy—yull € 2(xM+[|x—l]) is obvious. In [1], Corollary,
p- 802, it is shown that the inequality

@ eyl < x2-0(2 ) 20—

holds for line L and x, y & L in a strictly convex space. Assuming L = {(1— ) xy+
+Ayu: |Al < o0} and using (4), (2), we obtain (3). m

If M is an existence plane in X, then under the conditions of Lemma 1, we
have xi = xi; (i = 1,2) and, consequently, the inequality

® e —x3ell < x;M-Q(ZM +2[xt - x|
M le— »

for x!, x2 ¢ M.

Let us recall the definitions of
® &(o) = sup{|lxt—x2||: [|x}]| = |Ix*] = 1, 1—|]x*'—x*|/2 < o},
0<a<l,
an inverse function of the convexity modulus [7] of the space X,
M o(®) = dsup{|lx+yll+[Ix—yl|—2: {Ix[| = 1, [Iyll = =},

the smoothness modulus of X [8]. In [2] another smoothness modulus was intro-
duced, namely

720,

® 01(z) = sup{l—WTxZH:

el = T2l = 1, [l —x%] < T};
012,
and it was proven, in particular, that
©® e:(?) < e(x/2—7)),
A space X is called uniformly convex if s(oi)
is valid:
THEOREM (B. Bjornestdl [5]). Let X be a uniformly convex space, and P a closed

subspace in X, x° € X, x°P = 1; then there exists a number t, dependent on X only
and such that

(€]

0<T<2,

0 [7]. The following theorem

=0

sup

e [Ixp— x|l < 26(20(60)).
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The estimate (10) is of interest because in the case of L, (I < p < oo) spaces
it cannot be improved with respect to the order of #, ¢ — 0, an the class of closed
subspaces P e L, [6].

Using (4), we will come to a similar estimate for a convex existence set.
THEOREM 2. The following inequality holds:

Q) < 6(20:(0) < s(29(t/(2—t))), 0<t<l.
Proof. For any y > 0 there exists a plane P < X such that s(VnP) < ¢,
d(VnP) = 2(t)—y. Let us have x;, x, € Vn P such that [[x, —x,|| = dFnP)—y
and write x = (x; +x,)/2, x’ = x/||x||; then
(12) Q) < lw=wll+2y < alllx—x1)+2y.
Owing to s(VnP) <t there exist v;,v, eP satisfying the conditions |z]|
=llall = 1, lloy—wll < t, x€[01,05] If 0 = (0, +2,)/2, ' = v/|[v]], then
a3 llo—2'll < 0:(0).
Now we estimate |[x—x'[| by |lo—’'|]. Let w, w € [v;, ©,], be such that the segments

[x', w], [v', v] are parallel. The element w exists because ||v; —#,]| < t < 1. As can
easily be seen,

an

' —x]] _ [l

_ 1- [l —x]] |
I =wll ~ Tl

1-jlo—o'|]
thus {|x—x']] < 2|jv—2']|/(1+|lv—2'|]). The last inequality and (12), (13) lead to
Q) < s(2gl(t)). Using (9), we complete the proof of the theorem. From (3) and
(11) follows

THEOREM 3. Let X be a strictly convex space, M a convex existence set in X
and r >0, 0 < ¢t < min{l, 7/3}; then

(14 sup{[lxp—yull: xM = r, |[x—y|| < 1} < rQ(2t/(r—2t))+2¢
< re(20, (2(r—20)))+2t
< re(2o(t/(r—36)))+2t.

X —wil < 2[lp—2'Il,

2

In what follows we will deal with a space L(S, p) of real functions integrable on
the space (S, #) with nonnegative measure u. For fe L(S, ) denote as usual

Al = Sl f(t)|du. We will formulate several known results. Let P be a subspace
S

in L(S, p) (possibly infinite-dimensional). For fe L(S, ), x € P write
A=f-x, Z={teS:f(t) =x@)}.
THEOREM [11]. An element x € P is the best approximation element for fe
L(S, p) iff

() |{»@singd@du| < {y@lds  VyeP.

s z
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THEOREM [3]. The best approximation element x € P for f e L(S, p) is unique
iff for any y e P, y # 0, at least one of the following conditions is true:

() pite S\Z: signd(r) = signy(), [y®)l > 4@} > 0,
an {y@signd@)du < § 1yl da.
S z

THEOREM [12]. If a space (S, w) has no atoms and P is a finite-dimensional sub-
space of L(S, w), then there exists a y € L(S, ) such that

as) pnl =1 Vies,

{ywwyau=0 vyer.
S

In what follows all the subsets from S in question are supposed to be
measureable, and the symbol V' means “for almost all”.

Lemva 2. Let P be a finite-dimensional subspace in L(S, ). For any y > 0
there exist ¢ > 0 and a set e = S, ue > 0, such that

19 (Fe P, lIfll < &)= (f) <y Vieed.

Proof. The proof is evident.

LeMMA 3. If the measure u has no atoms and P is a finite-dimensional subspace
of L(S, p), then for any 1 > 0 there exists a set E=E, S, 0 <puE<7 and
a function y € L(E, u), 0 < y(f) < 1 V't € E, such that
(20) (peP, p(t) < p@t) YteE) = (p() <0 VieS).

Proof. It is sufficient to verify (20) for ¢ € P, ||g|| < 1. The set

On={rep:liflict,  § f0du>1m (m=1,2,.)
{teS: (£) >0}

is compact. For every f € Q,, there exists a number 0 < y, < 1 with the property
ui{teS: f(t) = ys} > 0. Using Lemma 2, we find a number ¢ > 0 and a set
e; = {teS: f(t) = y;} such that ue; > 0 and

@n @eP [If-pll <e)=(p®) > fN)~y/2> y;l2 V'ieey).

Thus Q. is covered with the sets F(f, &;) = P, (f€ ). Owing to the compactness

of Om, we can select a finite number of neighbourhoods V}* = V(f", &), such that
Nm

On < H Py, Write y, = min{y;y: i = 1, ..., N/;j = 1, ...,m}. Since the measure

4 is non-atomic, there exists a set EJ' < ey, 0 < pE" < n/Na2"t (i =1, ..., Np).
N

Let E™ = HE{"; then 0 < uE™ < /2"+* and (see (21))

22

Now we write

Vo eQnle c E™: pe >0, ¢()>y, Viee.

p(@)= inf 9y, (teE);
: te EM}

m=1 {m
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then uE < 7, p{t € E: p(f) = 0} = 0. Thus for # > 0 we have built the set £ = S,
0 < uE < 7 and the function p e L(E, u), y(1) >0 V't € E, such that

[+s]
23) Voe U QnlecE: pe>0, o(t)>y(t) Vice.
m=1

Conditions (20) and (23) are equivalent.

THEOREM 4. Let (S, i) be a space with a non-negative o-finite measure without
atoms, P a finite dimensional subspace of L(S, u), and yo an element of P. For any
&> 0,y >0 there exist functions f,f; € L(S, ) such that lAi=rall <& lfiell
< |lyoll+y (@ = 1, 2); moreover, yo (coresp. 6) is the only best approximation element
from P for fi (coresp. f3).

Proof. Let the function y & L(S, x) satisfy conditions (18), S* = {teS: y(®)
= +1}. The proof will be given for the case uS* >0, uS~ > 0. If uSt =0 or
uS~ = 0, then the proof is nearly the same. As follows from Lemma 2, for 7 > 0
there exist sets et = S*, e~ = S~ (0 < pe* < 7/2) and functions ¢* e L(e*, u),
@~ e L(e~, p) such that ¢*(z) > 0 V'tee*, ¢=(1) <0 V'tee , and

(peP,p() < p*(t) Ve et)= (p(t) < 0 V'reS*),
(peP o(t)> ¢=(t) Vice )= (p(r) > 0 V'teS~).
Let us have g € L(S, ), g(¢) > 0 Vte S, and denote e = e*ue™,

@9

pOE®O+1po®)]), teS\e,
fit) = ve@O+e* (@), teet,
Vo) +9™ (@), tee,
@5
fl(t)’ te S\E,
f2(t) = ‘W(t), teet,
g~ (), tee .
Then
(26) sign(f.(t)—yo(®)) = signfo(t) = p(@).

As follows from (26) (see (15)), yo and 0 are the elements of the best approximation
according to f; and f,. To prove uniqueness we will verify the inequalities (for
any yeP, y #0)

@D p{tesS: sign(fi())—yo() = signy (@), (O > i)~y @I} > 0,

29 it e St signfi(t) = signy(®), (@)l > A0} > 0.
It

29 yt)<0ViteSt and ()20 Y'teST,
then

Sy(t)w(t)dﬂ = S y@)dp— SS y(®)du <0,
$ s+ -
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which contradicts (18). Hence at least one of the inequalities (29) is wrong. Let
the first one be wrong. Then u{feS*: () > 0} > 0 and (see (24)) u{ree*:
»(@) > ¢* ()} > 0. But it is exactly (27). Inequality (28) is verified as (27). Using
(24) and the inequalities ue < 7, [p*(t)| < 1 (Vzee*), we obtain |[fil| < ||yoll+
+lgll+n. Then ||fi—1fll < S |70(2)| du. Choosing the [|g|| and # small enough, one

e

obtains inequalities || || < ||yoll+y G = 1,2), |Ifi=f2l] < &

Remark. In the proof just given the uniqueness of the best approximation
element is established by means of (16). The functions f;, f, can be constructed in
such a way that the uniqueness can be proved by means of (17).

The Hausdorff distance between the sets 4, B in the normed space is further
denoted by h(4, B). The following assertion is straightforward consequence of
Theorem 4.

THEOREM 5. Under the conditions of Theorem 4
(30)
consequently the metric projection from the unit ball of the space L(S, ) onto each
Jinite-dimensional subspace P € L(S, u) is not uniformly continuous.

Remark. Theorems 4, 5 were proved in [3] for S = [a, b] in another way.

THEOREM 6. Let (S, u) be a space with non-negative o-finite measure u, ne
{1,2, ...}. Then the following conditions are equivalent:

sup {h(xp, )t llx—yll < ¢, x| < 1} 21 Vi>0;

(2) there exists an n-dimensional subspace in L(S, u) with a uniformly continuous
metric projection,

(b) the space (S, p) contains at least n atoms.

Proof. Suppose that (S, ) contains only k atoms {t;}}_;, k < n. If P is an
n-dimensional subspace in L(S, p), then there exists a y, € P; || oll = 1, yo(t) =0,
i =1, ..., k. Applying Theorem 4 to the space (S\ {#;}¥, x), we obtain the functions
1 f2 e L(S\{u}}, p) for any & > 0. The functions f*: fi(r) = fi(), ¢ ¢ {t;}¥;
Fi@) =0, j=1i,...,k (i=1,2) have the properties ||7*—f2| < ¢, f5 = Vo,
f%=10. S0 (2) implies (b). The converse implication is evident.
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