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1. Introduction

In the joint paper by P. Simon, P. Sjélin, and the author [5] it was shown that the
Franklin and Haar bases in L,(0, 1), 1 < p < oo, are equivalent, and a simplified
proof of the result of S. B. Bogkariev [1] on the unconditionality of the Franklin
system in L,(0, 1) was presented. Moreover, the convergence a.e. of the Fourier
series with respect to the bounded orthonormal set of polygonals for functions in
L,0,1), 1 <p < 0, was established. We have suggested in [5] the possibility of
extending all the results to spline systems of higher orders. The main goal of this
paper is to carry out this programm. The ideas of the presented proofs are not
in principle new compared with [5]. However, in order to have more or less complete
theory of the spline systems it seems necessary to publish this paper in addition
to the works by Z. Ciesielski and J. Domsta [4], Z. Ciesielski [3], T. Domsta [6],
and S. Ropela [9], [10], [11].

The main results of this paper require some comments. Theorem 3.1 is the
crucial one. It implies in particular the unconditionality of the Haar and Franklin
orthonormal sets in L,(0, 1) spaces 1 < p < oo (cf. Corollary 3.1). Moreover, as
a consequence we obtain Theorem 3.2 as well. The second non-trivial result is
Theorem 5.1, and it follows essentially from Theorem 3.2 and the highly non-trivial
maximal inequality for Walsh system proved by P. Sjolin in [12]. One would expect
that a result like Theorem 3.1 should give Theorem 4.1. We were able to prove
the equivalence of the spline bases by means of the C. L. Fefferman and E. M. Stein
inequalities [7] only.

2. Preliminaries

The simplest way of defining the spline systems, in which we are interested, is by
the Haar orthonormal functions z,, # = 1,2, ..., given on I =<0, 1). To do this
let us denote by D the differantiation operator and let us define the following in-
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tegration operators:
1

6@ =Srwau, @D @) = e,
0 t

and the usual “scalar product”
Ge) = FeLd), ge LD,
e

where 1 < p, g< © and p~i+4+g71 = 1.

Let m be an arbitrary but fixed integer, m > —1.

It is clear that the functions 1, ¢, ..., t"+%, G"+*1y,(¢), n > 2, are linearly in-
dependent over I. The Schmidt orthonormalization procedure applied to this set
of functions gives the orthonormal set of splines {f¢™, n > —m} of order (of
smoothness) m. Following now [3] we define the remaing splme systems as follows.
For 0 < k < m+1 we set

SH = DY, > k=m,
and
g = HYM™,  n>k—m.

For our purpose it is more convenient o0 have more unified notation for the
systems {f{™®, n > k—m} and {g™®, n > k—m} where 0 < k < m+1. To com-
pare these spline systems as bases in L,,(I) it is good to normalize them suitably

in the L, norm. Thus, let us define for [k| < m+1 and n > |k|—
b = fempjfmibyzt for 0< k< mtl,
lgm™=Plfm=Rll,  for 0< —k<m+l,

where
it = (1re) ", 1<p< oo
I

With the help of the results established in [3] it is not hard to derive for |k|
< m+1, 1 € p < o, the following properties:

(1) There is a constant C,, depending on m only, such that

nl[z—l/pcvl < ”h(m k)”p nl/z 1p,

Q) The set {A™®, K™D, i, j> |k|—m} is biorthogonal, i.e. (h{™®, h™~")
= al]for i,j> lki_

(3) The system {h{™®, n > |k|-m} is a basis in L,(I), 1 < p < 0.

@ Let n=2"+v, 1<v <2, t,=(v=12"¢ and let {|A™P, =
|BG™ 0 (s§™)|. Then |ta—s¢™®| = O(1/n) for large n.

(5) There are constants C,, and ¢y, 0 < q,, < 1, such that

2] <

nl/zqnlr—t..i

holds for n > 1, tel
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(6) There is a constant C, such that
(BB @) < Cp242
2W<ngt!
m+1, u>0andtel
LemmA 2.1 (S. Ropela [10]). Let the integers m and k be given such that |k|

< m+1. Then {h{™®, n > |kl—m} is an unconditional basis, i.e. a Riesz basis in
LZ(I).

LeMMA 2.2. Let m, m', k, and k' be given integers such that |k|
m'+1. Then there is a constant C,, ., such that

DY

2B<ng2ptl

< m+1 and
Kl <

mm'

OB < 22

|[t—s|>2—#
holds for t,s el

Proof. To each n > 2, n = 2"+v, 1 < v < 2% there corresponds the dyadic

partition
i
|5 for i< 2,
Sn,i = i—w
|7t for i>2.

Now, for given t € [, ¢t > 0, let {¢)> denote the unique solution of the inequality
Snry—1 < < Suqry. Then property (5) of A{™Pgives

D] < Ca22gJ-.

Consequently, for some Cpm and gmm With max(@m, gm) < gmm < 1, we have

2

2H .
BB 0] € CnCo 2 3 g4 € G P
v=1 .

2#cng2btl
On the other hand, there is a constant C,, . such that
C 1’
24, 2M] 12-s| < L
2 Im,m lt—‘5|2
|t—s]>27H#

Combining these two inequalities we complete the proof.
The Waish system {w,, n > 1} is a bounded orthonormal set related to the
Haar system {y,, n > 1} as follows:

Wy =X
and

26
Wathyy = ZAﬁ’fIXz#H, 1<v<2.
=

28

ABWay,, 1< A<

y=

where Asﬂ) = (Wzl‘+n XZI‘-M): Aﬁ’,‘ = AS.’.‘Z

X2tqa =
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Starting with the system {A{"®, n > [k|— m} instead of the Haar system, we
define w™®, n > |k|—m, in the same way as w,, ie. wi™® = hm® for n
= |k|—m, ...,1 and (cf. [2) and [9])

W ZA(u)h(m o<y

Waily

It now follows that

mk) () (k)
h;ﬂ,u, ;Av./{wzﬂ.w’

I<Ag2¢

Since A = 277, we obtain by property (6) of {h{™®} that for some constant C,,
WO < Cuy, n 2 k-
Thus, {w"®, n > |k|—m}, [kl < m+1, is a set of splines of order m— k uniformly

bounded on I According to property (2) we find that the set {w{™®, wim-", i j
> |k|—m} is biorthogonal whenever |k| < m+1.

LeMMA 2.3 (S. Ropela [9]). Let the integers m and k be given such that |k|
<m+1 and let 1 < p < 0. Then {wi™®,n > |k|—m} is a basis in Ly(I).
It seems to be a good place to 1dent1fy the spline systems for particular choise
of the parameters m and k with some of the known systems:

) = (1)
(70 = .}
(0} = (£}
(0} = (e}

For the proof of the equivalence of the spline bases we need an inequality of

C. L. Fefferman and E. M. Stein [7]. To state it let us recall the definition of the
maximal function. If fe L,(I), then the maximal function is defined as

M (@) = “:PI%TS 111,

m, tel.

the Haar system,

the Walsh system,

the Fraoklin system,
for this system see [2].

where the supremum is taken over all intervals w<I such that ¢t € o.

Lemma 24 (C.L. Fefferman and E.M. Stein [7]). Let 1 < p < o and let
81182, ... be a sequence of functions in L,(I) with the property that

(D 1el?) " e L.

Then there is a constant C, depending on p only such that

I aze)™, < o[ ) ..

In the proof of the maximal inequality for the basis {w{™®, n > |k|—-m} an
important role is played by
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LeMMA 2.5. Let m and k, |k| < m+1, be given, and let

n

H,Em'k)f = (f, h}m,—k))h}m,k).
J=1k|—-m

Then there is a constant C,, such that

HOf< CuMf,  feLi(),
where
H"of = sup|HE"f .
For 0 < k < m+1 the lemma was established in [3]. In the case of k: —(m+1)

< k £ 0, the proof is quite similar and therefore it is omitted.
Now, the well-known Hardy-Littlewood maximal inequality, (cf. [13], p. 5),
combined with Lemma 2.5, gives

CorOLLARY 2.1, Let |k| < m+1andlet 1 < p < co. Then for some C,, we have

IHSSllp < Cu—Z U
and
o LEF 11y < Coll1flog* 1 f1]]; + Con-
3. Unconditionality of the basis {h{""®} in L,(I), 1 <p < 0

For given m and k, (k| <
the form

m+1, a function f is called (m, k)-polynomial if it is of

f= Z a;h™e.
J=lk|~m
Now, let the integers m, k, m', and k' be given such that [k] < m+1, [K'| < m'+1,
and let e = {& = £1, j > (k|]~-m)v (k'|—m’)} where avb = max(a, b). The
operator T is defined on (m', —k’)-polynomials as follows

0

Tf = &5(f, B R,
J=(lk}—m) v (k'|=m")

Let us notice that, according to Lemma 2.1, Tf is well defined for fin L,(I), as well.
THEOREM 3.1. There exists a constant C,,n such that

3.1 [{t: 1T > p)i < cm,m,My”—l—, y>0,

holds for all (m', —k')-polynomials f, i.e. T is of weak type (1.1).
This theorem is being proved in almost the same way as Bogkariev’s theorem
in [5], and the proof below is given simply for the sake of completeness.


GUEST


60 Z. CIESIELSKI

Proof. For fixed y > 0 let us define @ = {reI: Mf(t) > y} and P = I\Q.
Since the operator M is of weak type (1.1), we have (cf. [13], p. 5)

3.2) ol < % 1111l

Notice that (3.1) holds with Cp,mw = 5 if only 0 <y < 511f]l;,. However, in the
opposite case, P is non-empty, and in this case let (Q;)7 be a Whitney decomposi-
tion of @ (see [13], pp. 167-168), i.e. each Q; = <o, B> is a dyadic interval of
the form (2™#(—1),2 ") and

(3.3) 0= I_L=J1Q,, i# 7,

34 1Qi] < dist(Q;, P) <
Now, (3.4) and the definition of P give

Jin<

The next step is to decompose f in suitable way into a sum of two functions
f, and f5. To do this let T; denote the orthogonal projection of L,(Q;) onto-the
(d+1)-dimensional subspace spanned by 1,¢, ., t% restricted to Q;, where d
= 2[(m+1)v (' +1)]. Let

intQ;nintQ; = &,

41040

(3.5) 5y1Q4.

@) for teP,
£ty = {Tuft) for teintQy, i= 1,2,..,
0 for teQ\ LiJ intQy,

and let f, = f—fi.

The projections T; can be represented in terms of the Legendre orthonormal
polynomials /o, ..., s, given on I Indeed, let

I—o

J.l(t) = [0/ ( ol ), ’te TH

then . T . v e .

d i
Tft) = éf(s) (Zoz,-_i(z)zj,ms))dv, teQ,

whence we infer

izl < = (i reon
Qi
where
d
Ca = max | L))
s,tel j=0

icm
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Thus, the definitions of P and f;, and (3.5) give

WAQIRS

The following properties of f, are going to be needed. According to definition,
f(t) = 0 for t e P, and f; restricted to O; is orthogonal to all polynomials of degree
at most d, i.e.

X))

(3.6) 5Cy ae. in tel.

szw =0,

o
where w is a polynomial of degree less than or equal to d. Moreover, since f,
= f—f,, we have from (3.5) and (3.6) :

i=1,2,..,

{15l =12,

Qi
The estimate for Tf;. According to Lemma 2.1 we have

(3.8) < 5(Ci+ 12104,

© 0

17313 ~ Vo B < D (fu, ™Y ~ 1A,

J=(k]—m) v (|| —m') J=[ =
and therefore for some constant C,,,. We have
(3.9 Zfill2 € Copmll fill2 -
Consequently, (3.9), (3.6), and (3. 2) give

1 1201 > ) < WEHE ¢ oy ”""(Slfm Sw)

Cm m’ m m’ m,m'
< S (fi S ) < =0 Ai+71el) < 2 71
We denote, here and later on in each step, by the same letter different constants.
The estimate for Tf,. Let us expand f, with respect to {A{""~*?, j > |k'|-m'};
f2 is bounded, so we have

fo= by hr=k?
Jj= |kt

where b, = (f, h¢""*"). Since f, vanishes on P, it follows by (3.7) that br|—m
= ...= b, = 0, and consequently for n > 2 we have

0

b=, Ll

i=10;
Now, if 2# < n < 2*+1, then K™ *" is a polynomial of degree at most 2(m'+1) < d
on each dyadic interval of length 2~®+, Thus, according to (3.7), for an i such
that |Q] < 2%+ we have

[ fubirr = o,
Q1
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and therefore

b= . {fnrw.
Qi =2"#
Consequently,

TEOI =] D ab O < Y. D bR
n=(|k|=m)V (|k'|~m") r=004 < pgoptl
<D el Y (IA@RT@ds

#=0gu e pgoptl i Q22 H 2

=S Time Y IO OIS
i=10; Qi >2—F 2 <ngantl

<Y fise( X 2 Y @) ds.

i

[
PN

o u |Qil22—HF  2k<ngadtl

Let us now assume that ¢ € P and s € Q;. Then (3.4) implies that [t—s] > |Qi|, and
therefore, for ¢t e P, by Lemma 2.2 and by (3.8)

Isz(t)léilQilSIfz(S)l( ST N meorow)

1 <] |t—s|32—#  2H<ngptl

< G 2101 § 1501 s

O

< cmZ 10, [dist(r, Q)] § 1Al

< Cumy Y | [0:12Mdist(r, Q]2
i=1

" Notice that (3.4) implies |Q;| < dist(s, P) for s € Q; and that dist(z, Q;) > |t—sl|/2
for s Q;, t € P. Thus, for each i we have

Pt @12 < 4 { L) g,
Q lt_s!
and therefore
di P
1Tl < Gy S —‘—[stt(_s;lz) ds, teP.
Q

icm

.(3.10)
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It now follows from a property of Marcinkiewicz integral (see [13], pp. 14-15) that
for some constant Cy, m:

{176 < Crmevi0l.
P

This and (3.2) give finally
[{tel: |THE)] > v} < |@1+|{te P: |T()] > y}

< i0l+—- | 1Thl < Cumi0)
P

[1f 1]

< Cume ,

=

and therefore the proof is complete.

THEOREM 3.2. Let p,m,k,m', k' and ¢ be given such that 1 < p < oo, |k
< m+1 and |K') < m'+1. Then there exists a constant Cy . such that

2
IZFlls < Gy 1Tl

Proof. Inequality (3.10) for 1 < p < 2 is a consequence of Lemma 2.1, Theorem
3.1, and the interpolation theorem of Marcinkiewicz (cf. [14], vol. II, (4.6)). Let
now T*: L,(I) » Ly(I), p~*+¢~" = 1, denote the conjugate operation to T. It is
easily seen that
o0
Tig = 24(8 B,
J= i ~rV R =y

ge L)

According to Theorem 3.1, T* is of weak type (1, 1) and, by Lemma 2.1, it is of
strong type (2,2) and therefore we have

1
“T*g”;vscm,mf};—_"l_“g”m 1 <17$.2
Now, simple conjugacy argument gives (3.10) for all p, 1 <p < 0.

COROLLARY 3.1. Let m, k, and p be given such that |k| < m+1, 1 <p < co.
Then {h¢"™®, n > |k|—m} is an unconditional basis in L,(I), and for some constant

Cn we have
w0 ]
H Z +a; b Z a;K™®

= k=m J=kl=m

ey
{p <Cnpoy )
To obtain Corollary 3.1 we use Theorem 3.2 with 7 = m’ and k = -k
Remarks. Corollary 3.1 gives in particular the unconditionality of Haar (J. Mar-

cinkiewicz [8]) and Franklin (S. V. Botkariev [l]) bases in LD, 1<p< . The
first case corresponds to m = —1, k = 0, and the second case to m =k = 0. If
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m is arbitrary and k = 0, then Corollary 3.1 can be obtained by direct extension
of Botkariev’s result (cf. S. Ropela [11]).

COROLLARY 3.2. Let k| < m+1, 1 < p < 0, and let for fe L,(I)
0

F= Y ame,

n=|kj—m

Then there is a constant C,,, such that

Cablifily < | i @ k2| < Gl il

This follows from Corollary 3.1 by the known argument with the Khinchine
inequality.

4. Equivalence of the spline bases in the L,(I) spaces

The main object of this section is to prove for given p, 1 < p < 0o, the équivalence
of all bases in L,(J) belonging to the family {h®, n > |k|~m} indexed by the
pair of integers (m, k) [k| € m+1. It is sufficient of course to prove that the

Haar system {4, n > 1} is equivalent to {A{™™®, n > |k|~m} for each pair (m, k):
|kl < m+1. To do thxs we need two lemmas.
Let ST(I) denote the linear span of {A™®, —m<j< n}, and let I,

= {Sn,j-1s%,5) for j=1,..,n~1 and I,,= (s,,,,,_l, s,,,,,) The partition 0
= S0 < . <Spy=11s deﬁned as in the proof of Lemma 2.2.

LEMMA 4.1. Let m > —1 be given. Then for some constant C,,,

¢@D—¢) |

11—

< Cmn ! S [¢|: t’SEInJ
> II"'jI In,j .

holds for j=1,...,n; ¢ € S?(D).
Proof. The case of m = —1 is trivial. Let us assume, therefore, that m > 0.
The argument is now carried out in two steps.
First step. For given m we introduce the family of partitions 7, ; = {s¢)

1y oor

. s,,,+2} J=—m,...,m+2, which is described by the following properties:
s‘f’ 1< <8P, 9 =0, =1, and 9, = 6"’+, = .. = 0P =1s@,
= .= %65,{12 for j= —m, ...,m+2, where 6? = s{P—5{ . To each partition
there correspond the B-splines

B(D(t) = (sg-)m+1*s§l—)1) [S(D . :si(j-l-)m-;-l’ (s"t)r"l]; i= —m, ..., 1:

where the square bracket stands for the devided difference. For each j, —m < j
< m+2, {BY, i=—m, ..., 1} is a basis in ST(l), i.e. in the space of polynomials
on ] of degree not exceeding m+ 1. Thus, each y e ST(I) has unique representation

’ 1

v .= : Z a’BP,

i==—m -
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Writing @ = (@9, ..., af”) and {[aP||; = [a%,|+ ... +|af], we find easily that
there is a constant C, such that
.1 Callla®lly < llylly < CullaPlly,  j= —m, ..., m+2.
Second step. Let us assume that ¢ is in S7'(J). The function ¢ has therefore
the unique representation
n
¢ = ) EN,

i="m

where N, i = —m, ..., n, are the B-splines corresponding to the dyadic partition
{Sni, 1= 0, £1, £2, b
Let now ¢, seintl, ;. Then

$E)—¢(s) = Z E(RO-NRE@) = D) & SDN; N(s)ds,

i=—-m i=j—m—
whence we infer
J i
5
@) 16O—-dG) < lt=s] Y IEIIDNGll < lt—si2n Y
i=j—m-—1 i=j-m—1
On the other hand,
J
]. 1 (m)
) Q= O D e
Ll 2, il 2 i:j_zm-i

=§’ i fiN.';f’(flIn,jl+S,,,,-_1)|dt.

0 i=j—m—1
Now, to complete the proof it is sufficient to apply the left-hand side-of (4. 1)
to (4.3) and to combine the obtained result with (4.2).
COROLLARY 4.1. If m > 0 and ¢ € Sy(I), then

DY) < Co e 7 ',§ I, teluy,i=1,.0m

For further use let for given m, k, k| < m+1, and n > 1, the integers r, u
and 1 be given as follows: r = m+1—[k|, 2! < r+1 < 2¢ and 2% < n < 21,
Notice that r > 0. Moreover, let f(t) fa-n,tel

LEMMA 4.2. Let m and k, |k| < m+1 be given. Moreover, let n > 2+ e A
> u. Then for some constant C,, we have

@  |gal < CuMB™P  for 2+r<m,
Q) |7l < CaMBP for  n < 24,
(i)  |AgmP < CuMy,  for  2+r<n,
@iv)  |aembl < CuMy, for  n < 224r.

5 Banach Center t. IV
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Proof. Notice that A"™® e S¢=0(I).
Let now assume at first 2*+r <7 Then n—r =241 1 €1 < 2* and n
=240 1< '=14+4r<2*

The proof of (i). In the case of k = m+1 we have h{"® e S;*(I) and therefore
(i) is 2 consequence of the properties (4) and (1) (p = ) of Section 2. For k
< m+1, inequality (i) follows by Corollary 4.1 and properties (1) (p = ) and (4)
of Section 2.

The proof of (iii). This inequality follows by property (5) of Section 2.

The second case corresponds to 2*+r > n, and therefore 2*~! < n—r < 2%
Thus, n—r =214 with 1 < 2" 1—r < I 21, and n = 241" with 1</
< r < 2% In particular, we infer that r > 0.

The proof of (ii). Corollary 4.1, properties (1) and (4) give (ii).

The proof of (iv). It is sufficient to apply property (5).

THEOREM 4.1. Let m, k and p be given such that |k} <
Then the Haar system {g,, n=1,2,...} and {h{™®; n >
bases in the space Ly(I), i.e. the following two series

m+1, 1 <p< oo
|k|—m} are equivalent

©

“4) >
. n=1
and
4.5) Z an+m+1—|k|h§m'k)

n=|k|-m

are equiconvergent in the space Ly(I).

Proof. Let f denote the sum of (4.4), and let g be the sum of (4.5). It is enough
to show the existence of such C, , that Cz%[1f1l, < llgll, € Cmzllfll,. However,
this follows by Corollary 3.2, Lemma 4.2, and Lemma 2.4.

5. Almost everywhere convergence for bounded spline systems

In order to state the maximal inequality’we introduce the following notation:

n
Wby = Z] (f; WPy,
J=|k{—m

Wmbf = sup| Wimbf].

n

THEOREM 5.1. Let m,k, and p be given such that k| <m+1, 1 <p < oo,
Then there exists constant C, such that

(Iwmoll, < (p 1)5 g llflle,  feLyd).

icm

EQUIVALENCE, UNCONDITIONALITY AND CONVERGENCE A.E. 67

Proof. The idea of the proof is related to the argument used in [5] and therefore
the present reasoning is being restricted to the main steps only.
Let us define

If = ) O, Ky,
Then the following inequalities can be derived

(5.1)  WER< HEBfpsup sup |(Wol—wie )]
p=0 1<w2¥

SHEPf+CM(sup sup |(W5l)— WS ™) 7o)

n=0 1<v<2?
< H{Of4 Cp MWS 1 OTF+ C,p- MHG VTS
It now follows by Theorem 3.2 that

2
(5:2) 1Tfllp < Cu g 1l

Corollary 2.1 gives

(5.3) IHS Pl < Cu=Z 1Sl 1kl <

The Hardy-Littlewood theorem implies

m+1.

(5.4) 1 Mfllp <

Finally, P. Sjolin [12] proved that

C—llfl

(5.5) HWEHOf llp <

pi
C*(;:ﬁs—l]f llp-
Combining the five inequalities (5.1)—(5.5), we obtain the required inequality in the
statement of Theorem 5.2.

COROLLARY 5.1. Let k,m and p be given such that |k} <
Then, for every fe L,(I), we have

m+1, 1 <p < c0.

(5:6) f0) = Z (f, WD) w0t ace. in I.
n=|k|—m

Moreover, the series converges in the L, norm.

6. Final remarks

The limitting cases of p = 1 and p = oo could be discussed in similar way as in [5].
However, the results suggested by work [5] need not to be final, and the delicate
discussion how sharp the estimates are requires new ideas.

5+


GUEST


68 Z. CIESIELSKL

The question whether (5.6) does not hold in the case of k # 0 for some f
€ L, (I) remains open. For k = 0, {w{™®, n > —m} is a uniformly bounded ortho-
normal system and therefore, by a recent result of S. V. Bockariev, there is a func-
tion fe L,(I) such that the series in (5.6) diverges on a set of positive Lebesgue
measure. (Cf. S. V. Bo&kariev, Divergent on a set of positive measure Fourier series
for arbitrary bounded orthonormal set, Mat. Sb. 98 (1975), pp. 436-449.)
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1. Introduction

Since the fundamental work by E. Cartan it is well known that a wide class of
“special functions” of mathematical physics admits a geometric interpretation.
More precisely, E. Cartan and H. Weyl succeeded in identifying these functions
with certain distinguished functions that live on a corresponding homogeneous
G-manifold X, in such a way that their main properties can be obtained by the
analysis to be done on X. In our opinion [20], this philosophy that dominates the
modern theory of special functions is useful for the investigation of approximation
processes by expansions into special functions, too. This comes from the fact that,
roughly speaking, the coefficients of the expansions can be considered as the Fourier
coefficients of a transformation determined by the symmetry group G of X.

The main object of the present paper is the investigation of some aspects of
approximation on double coset spaces K\ G/K, where G is an unimodular locally
compact topological group and X a closed subgroup such that (G, K) forms a Gel-
fand pair (Dieudonné [12]). This choice is justified by the facts that, on the one
hand, the theory of Gelfand pairs forms “le cadre naturel de la transformation de
Fourier” (Godement [29]) and, on the other hand, that it covers a wide range of
applications.

The contents of the paper may be summarized in the following way: In Sec-
tion 2 we study multipliers 7' of the complex commutative semisimple Banach
algebra L1(K\\G/K). In particular, Theorem 1 gives several natural characteriza-
tions of the multipliers 7. Theorem 2 deals with a characterization in the spirit of
Eymard [24], [25] of the space A(K\G/K), which is defined by the inverse Plan-
cherel transformation &' associated with the space Z = Z(G/K) of all continuous
zonal K-spherical functions of positive type on G. This result (that is of interest
in its own right), combined with some Plancherel formula arguments, yields our
version of the Bochner—Schoenberg-Eberlein theorem, valid for multipliers of
LY(K\G/K) (Theorem 3). As a consequence, a sort of continuity principle (Co-
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