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The question whether (5.6) does not hold in the case of k # 0 for some f
€ L, (I) remains open. For k = 0, {w{™®, n > —m} is a uniformly bounded ortho-
normal system and therefore, by a recent result of S. V. Bockariev, there is a func-
tion fe L,(I) such that the series in (5.6) diverges on a set of positive Lebesgue
measure. (Cf. S. V. Bo&kariev, Divergent on a set of positive measure Fourier series
for arbitrary bounded orthonormal set, Mat. Sb. 98 (1975), pp. 436-449.)

References

[11 S.V. Bo&kariev, Some inequalities for Franklin series, Analysis Mathematica 1 (1975),
pp. 249-257.

[21 Z. Ciesielski, A bounded orthonormal system of polygonals, Studia Math, 31 (1968),
pp. 339-346.

[31 —, Constructive function theory and spline systems, ibid. 53 (1975), pp. 277-302.

[4] Z. Ciesielski and J. Domsta, Construction of an orthonormal basis in C™(I*) and
wE(IY, ibid. 41 (1972), pp. 211-224,

[5] Z. Ciesielski, P. Simon, and P. Sj&lin, Eguivalence of Haar and Franklin bases
in Ly spaces, ibid. 60 (1977), pp. 195-210).

[6] J. Domsta, A4 theorem on B-splines, ibid. 41 (1972), pp. 291-314.

[ C.L. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93
(1971), pp. 107115,

[8]1 J. Marcinkiewicz, Quelques théoréms sur les series orthogonales, Ann. Soc. Polon.
Math, 16 (1937), pp. 85-96.

[91 S. Ropela, Properties of bounded orthonormal spline bases, this volume, pp. 195-203.

[10] —, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. 24 (1976), pp. 319-325.

[11} —, Decomposition lemma and unconditional spline bases, ibid. 24 (1976), pp. 467-470.

[12] P. Sj61in, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. Mat.
7 (1968), pp. 551-570.

[13) E. M. Stein, Singular integrals and differentiability properties of functions, Princeton 1970,

[141 A. Zygmund, Trigonometric series, Cambrige 1959.

Presented to the Semester
Approximation Theory
September 17-December 17, 1975

icm°

APPROXIMATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 4
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1979

APPROXIMATION ON DOUBLE COSET SPACES

BERND DRESELER and WALTER SCHEMPP
Siegen University, Department of Mathematics, D-5900 Siegen 21, F.R.G.

To Professor Dr. Werner Meyer-Konig, Stuttgart,
" on his 65th birthday, 26 May 1977

1. Introduction

Since the fundamental work by E. Cartan it is well known that a wide class of
“special functions” of mathematical physics admits a geometric interpretation.
More precisely, E. Cartan and H. Weyl succeeded in identifying these functions
with certain distinguished functions that live on a corresponding homogeneous
G-manifold X, in such a way that their main properties can be obtained by the
analysis to be done on X. In our opinion [20], this philosophy that dominates the
modern theory of special functions is useful for the investigation of approximation
processes by expansions into special functions, too. This comes from the fact that,
roughly speaking, the coefficients of the expansions can be considered as the Fourier
coefficients of a transformation determined by the symmetry group G of X.

The main object of the present paper is the investigation of some aspects of
approximation on double coset spaces K\ G/K, where G is an unimodular locally
compact topological group and X a closed subgroup such that (G, K) forms a Gel-
fand pair (Dieudonné [12]). This choice is justified by the facts that, on the one
hand, the theory of Gelfand pairs forms “le cadre naturel de la transformation de
Fourier” (Godement [29]) and, on the other hand, that it covers a wide range of
applications.

The contents of the paper may be summarized in the following way: In Sec-
tion 2 we study multipliers 7' of the complex commutative semisimple Banach
algebra L1(K\\G/K). In particular, Theorem 1 gives several natural characteriza-
tions of the multipliers 7. Theorem 2 deals with a characterization in the spirit of
Eymard [24], [25] of the space A(K\G/K), which is defined by the inverse Plan-
cherel transformation &' associated with the space Z = Z(G/K) of all continuous
zonal K-spherical functions of positive type on G. This result (that is of interest
in its own right), combined with some Plancherel formula arguments, yields our
version of the Bochner—Schoenberg-Eberlein theorem, valid for multipliers of
LY(K\G/K) (Theorem 3). As a consequence, a sort of continuity principle (Co-
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rollary of Theorem 3) follows. Section 3 introduces the notions of prosaturation
family, of saturation family and the notion of saturation structure with respect to
approximation processes of the multiplier type on L'(K\G/K) and presents our
main results (Theorems 4, 5 and 6), concerning the saturation behavior of these
processes. Finally, Section 4 collects a list of various applications, whereas Section 5
adds some few perspectives towards further investigations in this field.

Throughout this paper, G denotes a locally compact unimodular topological
group (with a Haar measure mg) and K a closed subgroup of G (with the normalized
Haar measure my) such that (G, K) forms a Gelfand pair. Moreover we shall keep
to the notations introduced by Dieudonné [12]; all unexplained notations and con-
ventions are as there.

2. Muitipliers of L'(K\G/K)

In view of the fact that L'(K\\G/K) is a complex commutative semisimple Banach
algebra, we have at our disposal a suitable notion of multiplier; cf. Larsen [36],
[37]. Our present situation allows to establish the following characterization theorem.

THEOREM 1. Let T: L*(K\G/K) - L*(K\\G/K) be a linear mapping. The
following assertions are pairwise equivalent:

() T is a multiplier of L'(K\G/K), i.e, TeMult(L*(K\G/K)).

(ii) There is a Radon measure u € #*(K\\G/K) such that T(f) = feu for all
feLK\G/K).

(iii) T(fww) = T(f)w» for all fe L*(K\G/K) and all measures v &€ M*(K\ G/K).

@ T(CONT) = COITP)' for all yeG and feINENGIK) (“Wendel
condition™).

Proof. (i) = (ii): Let (#z)zerbe an approximate unit for L*(K\ G/K) such
that {[usl| g6k = 1 for all a € I. For each index « €/, define the linear form

pa: € (ENG/K) 3 g~ | g T(ua) dmo().
G

Then we have e € #*(KN\G/K) and |||l < ||T||. By Alaoglu’s theorem, there
exist a measure y € A (K\\G/K) and a subnet (u»)xcr such that u = hm 1 s with
respect to the vague topology of #*(K\\G/K). By standard arguments used for
instance in [23], we obtain T(f) = fxpu, for all fe L}(K\G/K) as contented.
(ii) = (iii): Obviously
T(fw) = (fowyeus = fu(or)
= fr(un) = T(F)w.
(iii) = (i): Trivial.
(i) = (iv): See the analogous arguments outlined in [23].
(iv) = (iii): It suffices to prove that

§ T(phdma(x) = § (T(f)yw)hdmo(x),
G G

icm

APPROXIMATION ON DOUBLE COSET SPACES 71

for all fe LH(K\G/K), h € L°(K\G/K) and » € 4 (K\G/K). We have, by the
Lebesgue-Fubini theorem,

§ T(f) hmo(x) = § (fo)Thame ()

G G

= {1809/ ® @ () Th(x) dma(x)
G
{
[e]

5(r)1) CTH (x) dmo(x) )

1

I

)
G
)
G
| (60100 TG dma() ()
G
§ 609 1) @ r@ dme ()

é
-

= { @(ry)name().
G

This completes the proof. m )
Let Z = Z(G/K) be the locally compact topological space of the all spherical
functions on G with respect to K that are of positive type and let #' be the inverse
of the Plancherel transformation (Godement [29], Dieudonné [12]). Define
A(RN\G/K) = F'L*(Z).
We shall establish the following characterization of the space 4(K\\G/K) by a L2-
factorization in the spirit of Eymard [24].
TuEOREM 2. The identity
AKNG/K) = L*(K\G/K)*L*(K\G/K)
holds. - v
Proof. If feI*(K\G/K*L*(K\G/K), then f=g=+h, whereg, he
L?(K\\G/K). Thus

) = Sg(y)’??@-*x)dme(y) - Sg@)i?(xﬂy)dmam

(g ]V(x) h);z(a) (fg l‘l (y(x) h) )LZ(Z)

= | Fel@) Fh@)a@) dns(0) = | F@)B@dms(@) (e,
z z
where F = Fg. 97&L1(Z) Consequently, we have f= #'(F) and therefore
LXEN\G/K)+L*(K\G/K) = AK\G/K).
Conversely, let Fe L'(Z). Then we can write F = F, F,, where F; eL’(Z)
(j = 1, 2). Choose f; € L*(R\G/K) such that F; = #f; (j=1,2).Letf= fizfz €
L2(K\G/K)*L*(K\\G/K). We show that f = &'(F). Indeed,
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FFE) = | Fo)a()dmz(@) = | F, () Fy@)o ) dny(o)

z z
= ZS% (@ F @ o) dnz(@) = | H,0)(0FH0))dma()
G

=fixh(x) =fx) (x€G).

Consequently, A(K\G/K) € L*(K\G/K)*L*(K\\G/K) and the proof is complete. m
Let A(G) denote the Fourier algebra of G in the sense of Eymard [24].
CoROLLARY. A(K\G/K) is a vector subspace of the commutative complex Banach

algebra A(G)n ¥°(K\G/K).

The corollary shows that Theorem 2 supra is of the Riemann-Lebesgue type

for the space L'(Z).

THEOREM 3 (Bochner-Schoenberg—Eberlein). Let ¢: Z — C be a my-measurable
Junction and M > 0. Consider the following four properties for ¢ and M.

() There exists a measure u € #*(K\G/K) such that Fu = ¢ and ||| < M.
(il) For every heL*(Z), hyp € L\(Z) and the inequality

[§pane] < b,

holds.

(iii) There exists a measure u e M (K\G/K) such that F u = @, locally mz-
almost everywhere on Z and ||u|] < M.

(iv) For every p = 12"‘; o; ;€ €°(K\G/K), where a,€ C, ;6 Z (1<j< m),
j<m
the inequality

| 2, ao@il| < 2.t

holds.
Then we have: (ii) is equivalent to (iii). For continuous @, (i) is equivalent to
(iii). If G is a connected semisimple Lie group with finite center and K a maximal
compact subgroup of G, then (i), (ii), (iii), (iv) are equivalent.

Proof. (iii) = (ii): Let h € L'(Z). Then #'he ¥°(K\G/K), by the Corollary
of Theorem 2. Thus

|{ A@)p@)dma@)| = | { he) Fu()dma(w)|

z z
= || duco)|

< |l NIl < ML F Ao
Therefore (ii) holds.

(ii) = (iii): The linear form ¥'; A(KN\G/K) - C defined by
W Fhie [ B0) pl0) by ()

z

icm

APPROXIMATION ON DOUBLE COSET SPACES AN 73

is continuous with respect to the topology of uniform convergence on K\ G/K.
The form ¥ admits a continuous linear extension u e .#*(K\G/K) such that
Izl € M. We find, for all & e L(Z), that

] K@)pw)dma(@)| = 1F G = | H) Zutw)dme(e |

Consequently, ¢ = Fu locally mz-almost everywhere on Z. Thus (iii) holds.

It is clear that for continuous ¢, (i) and (iii) are equivalent.

If G is a connected semisimple Lie group with finite center and K a maximal
compact subgroup of G, then Theorem 2 of Harish-Chandra [30] implies Z =
@°(K\\G/K). The rest of the proof now follows by the results of [22]. m

COROLLARY. Let (u).e1be a family of measures of the space M*(K\G/K) such
that sup ||| < M. Suppose that the section filter of the directed set I admits a count-

el

able base, and that
lim Fu,(w) = ¢(w)
(14
holds mg-almost everywhere in Z. Then there is a measure y € M*(K\G/K) such that
Fu(w) = ¢(),
locally mz-almost everywhere in Z and ||ull < M.
Proof. For every he L'(Z), we have k. Fp, € [*(Z) and

|§ b Fpdms| < M1 A,
V4

since supl|lsl| < M. The estimate sup|lFule < M shows that the Lebesgue
el el
theorem of dominated convergence is applicable. It follows hp € L'(Z) and

Hh:pdmzl < M||#'h||,,. This completes the proof. m
z

3. Saturation

Let A be a semisimple commutative complex Banach algebraAwith spectrum X(A4)
and Gelfand transformation %. Then the equationA@(Tx) = T.%x assigns to any
multiplier T € Mult(4) a complex-valued function T' & %" (X(A)) such that T. 4(4)
& %(4), and the linear mapping T~ T defines a continuous isomorphism of
Mult(4) onto this vector subspace.

Let (I, <) be a directed set such that the section filter of I admits a countable
base. A family (T').es of multipliers of 4 is called a prosaturation family of type
(@; ) if there exist a mapping ¢: I - R¥ satisfying liI?Jp(L) = 0 and a mapping

y: X(4) - C such that
- Tw)—1
h Jonka A
w90
holds pointwise for all w € X(4).

= y(w)
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A prosaturation family (T)).er of type (p; ) is called a saturation family of
type (p; v) if there exists a family (S,),e; of multipliers of 4 such that sup||S,|| < M,
el

and

T—1 A
: =y.S,
o

M

holds, for all te L.

Remark 1. Based on a lemma by P. Malliavin, Sunouchi [40] has shown that,
in the case 4 = L*(T), there are prosaturation families which are not saturation
families. In this connection also see Igari [34].

A family (T),er of multipliers of A is said to admit a saturation structure
(p; V, N) if the following conditions are satisfied:

(I) There exists a mapping @: I — R¥ satisfying limg(:) = 0 such that fe 4
el
and

ITN—A1l = o(p®) (el
if and only if fe N c 4.
) Iffed and

ITN=1fll = 0(e@) CGeD),
then feV < A.
(IIL) If feV, then

NT(N—fIl = O(p(®) CeD.

In this case, V is said to be the Favard space and N the trivial space of the
saturation structure (p; V, N).

Remark 2. Let the saturation family (7)).er of type (p; y) be given. Suppose
that the family (S)),er in Mult(4), occuring in (1), satisfies lim {S,(x)—x|| = 0, for
el

all x € A. Then we can show that (7}),c; admits a saturation structure (¢; V, N).
In this case, the Favard space coincides with the relative completion (Butzer—Berens
[8), Berens [2]) of

V,={xedly.¥9xe¥94)},

with respect to the norm of 4, and the trivial space N equals to the kernel of the
(densely defined) linear operator M, of factor sequence type associated to V.
In the sequel, let 4 be the semisimple commutative Banach algebra L*(K’\\G/K).

By Theorem 1, Mult(L!(K\(G/K)) can be identified with .#(K\\G/K). For any
function y: Z — C define

VyENG/K) = {fe KNG/K)| y. Ff = Fp, pe M (K\G/K)}

where = denotes equality m,-locally almost everywhere in Z.
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THEOREM 4. Let ()1 be a prosaturation family of type (p; p) in M (K\G/K).
Then (w).e1 admits a saturation structure (¢; V, N), where

V < ViK\G/K), N <KerM,.

Proof. (I) Since the Fourier-Stieltjes cotransformation F: M(R\G/K)
— %%(Z) is a continuous homomorphism of commutative complex Banach algebras
and (u).esr is a prosaturation family of type (¢; %), we have

lim| 7. ZEL
el 9°(L)

=0,

@

for all feN. Therefore
P©). Ff@) =0 (0e2),
ie., feKer M, as we wished to prove.
(i) Let fe V be given. There exist M, > 0 and ¢, € I such that
[l =f s
0]
for all telJ, i < t. Since (u).er is a prosaturation family of type (p;y), the

Corollary of Theorem 3 guarantees the existence of a measure u e .#*(K\G/K)
such that

< Mo,

Y(@)Ff(0) = Fu®).

Thus fe Vi(K\G/K). m

THEOREM 5. Let (u).e1 be a saturation family of type (p;v) in A (K\G/K).
Then (u).er admits the saturation structure

(93 VE(K\G/K), Ker M,).
Proof. It suffices to prove
VIENG/K)ysV, KerM,<N.

Both inclusions are direct consequences of the fact that the Fourier-Stieltjes trans-
formation & : #1(K\G/K) - €"(K\G/K) is an injective homomorphism of com-
mutative complex Banach algebras. m

Let the Plancherel measure be expressed uniquely in the form

mz = mé'*'m% ’

where m} e .#(Z) is a diffuse measure and mj € #(Z) an atomic measure con-
centrated on the set C; = Z.

THEOREM 6. Let (u).e1 be a prosaturation family of type (95 ) in M (K\G/K).
Let N, = {o € Z| p(w) = 0} be mj-negligible and suppose mi(N,) < +o0. Then
(1)ier admits a saturation structure (@; V, N), where

v < ViENGIK)

and N is the vector subspace of L*(K\\G/K) spanned by the set N, Cg.
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Proof. An application of the Fourier inversion formula shows that f'e Ker M,
if and only if f admits the form

f= Oy 0
wstr\Cz

(0, €C).

Thus, Ker M,, = Span(N, n Cz). The injectivity of the Fourier transformation shows
KerM, = N and the theorem follows. m

4. Applications

(1) Leta = (a@n)sez be a sequence of integers a, > 2 and G = T, the a-adic solenoid
(Hewitt-Ross [33], Hawley [31]). If Z, denotes the group of a-adic integers and B
the subgroup of R x Z, formed by the pairs (1, n), then T, = (Rx Z,)/B is a compact
connected topological group. The monothetic group Z, admits a basis (A,)sen of
open and closed subgroups A, = {(bmmen € Zi| b = 0 for m < n} about the
neutral element. Let (o).~ be a nonincreasing sequence in the interval J0, 3[
tending to 0 and

U“n = ]]—%OC,,,+%(Z,,[[:XA,,+1 (n EN), '

Denoting by &y, the characteristic function of U, in T, define

H, (neN).

1
= (mT,,(Um..))z Fuey* S0,

For each character y, €T, (4 = Tl a., meZ) we obtain
o o<nsk

Ak
A} 2rma, .
FHu(r )= W(l—cos( yh if nzk,
T 0 if n<k
and
-”/"Ha..(x__,i)—l 1 2
fm —— A 2™
pov a2 3" (Ak) '

Consequently, (Hs, .Mz )nen is a prosaturation family in #(T,) of type (p;v),
where
. 2 . 1 _,(m g
g: Noanws oy, u:Tgay, »—r’|—].
m 3 Ay
Ak
By Theorem 6, it admits the saturation structure (p; ¥, N), where ¥V < V(T,) and
N=C.
A second example can be obtained by letting

— A'"
Bor = 2a,

E]"‘um"’“nﬂ:xflnq-l (n GN)
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1t follows

Ar . [ 2mmay, .
FELy )= Tayrm si ( yn ) if nzk,
T 0 if

Hence, (Ex, . Mr)nen defines a prosaturation family in #(T.) of type (¢; v), where

n<k.

2
@: Nonw~oi, o T,axmml-rﬁ(ﬁ).
= 3 Ay

(2) The case where G is a locally compact Abelian topological group and K
denotes its subgroup consisting of the neutral element was studied by Buchwalter
[7] and by the authors [17], [18], [38]. For the case G = R, also see Butzer-Nessel
[9]. We add the following example that is well known in literature for special choices
of G.

Let I = R* under its natural ordering and (>0 a vaguely continuous con-
volution semigroup on G (Berg-Forst [5], [6]). Then (s} forms a prosaturation
family of type (¢; ) in A4*(G), where ¢ = idz%, p = —4¢, and ¢ is the uniquely
determined continuous, negative definite function on G such that

Fu,=e" (teR¥).

Consequently, (4:):>o admits, by Theorem 4, the saturation structure (¢;V,N),
where ¥ < V1(G), N = Ker M} and M, denotes the linear operator of factor
sequence type associated with ¥;(G). An application of the Fourier transformation
shows that the identity

t

pef—1 = { s (M3(N)ds (> 0)

0

holds. It follows in the present case
V="ViG), N =KerM;.

(3) Let G, be an arbitrary compact topological group, G = GoX Gy and K
the diagonal of G. Then we may identify the complex Banach space LY(K\G/K)
with the subspace of L1(G,) formed by the central functions on G, . The saturation
structure of approximation processes acting in L*(Go) is studied in [13], [14], [21].

If G, denotes a compact Lie group of dimension #, then any radial saturation
family of type (p; ) on the Lie algebra go of G, (considered as 2 real Buclidean
n-space) induces in a natural way a “radial” saturation family of type (@;#) in
M (G,). Details can be found in paper [15].

(4) Let (G, K) be a Gelfand pair. Consider in analogy with Example (2)
a vaguely continuous convolution semigroup (#)>o on G of positive measures in
MK\ G/K) (Berg [3]). In this case, again there exists a continuous negative de-
finite function g: Z — C such that

f,ut = e M (t GRI)
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Thus (ze):o admits the saturation structure (idR: , VI(K\G/K), Ker M1 o)

(5) Let (G, K) be a Riemannian symmetric pair and X = G/K a Riemannian
globally symmetric manifold (with respect to a G-invariant Riemannian structure)
of rank 7 > 1.

(a) Let G be compact. Then our results apply to approximation processes de-
fined by expansions in K-spherical functions on X in / variables. If / = 1, the Wang
classification shows that only the following cases are possible: X = S, = SO(n+1)/
/SO(n), X = P,(k), where k = R, C, H and X = P (Cay). The associated spherical
functions are the Jacobi polynomials P$®, for certain indices « > —1,8 > —1.
See Bavinck [1] and papers [13], [14], [19]. Also see Koornwinder [35], for the
case | = 2.

(b) Let G be noncompact and let X be of the Euclidean type. For an investiga-
tion of the Poisson approximation process in this setting by means of the Hankel-
Stieltjes transformation in the sense of Schwartz [39], see the paper [20].

(c) Let X be of noncompact type and have rank / = 1. In this case, the Fourier
transformation & is just the Jacobi transformation investigated by Flensted-Jensen
and Koornwinder [26]. For an approach that covers both the cases (b) and (c),
see Chébli [10], [11].

(d) Let G be a connected noncompact semisimple Lie group with finite center,
and let K be a maximal compact subgroup of G. Then X = G/K is a symmetric
manifold of noncompact type and rank / > 1. Let p denote the half-sum of the
positive roots of (G, K) and define, for ¢ > 0, the Gauss kernel

1
gl Gaxwm— S exp— (A1) +(ele))t . wx(x)|c(A)|~2dA.
Ao
Here w denotes the order of a Weyl group W of (G, K) acting on the real Euclidean
space A, of dimension / and ¢ denotes the Harish-Chandra function (Gangolli [27],
[28]). It follows that (g;.mg)»o forms a vaguely continuous convolution semi-

group of positive measures in .#*(K\\G/K) having the Laplace-Beltrami operator
4 of X as its infinitesimal generator.
Since we have

Tt Ao exp— (AN +lo))r (¢ >0),
Example (4) shows that (g;.mg).o admits the saturation structure
(idry, V1(K\X),0), q: do3 A (A1) +(clo)-

In the case G = S04(1,n), K = SO(n), we obtain for X the hyperbolic space of

dimension n > 2 (Berg-Faraut [4])1 The Laplace-Beltrami operator of X takes the
form

where

1 df . .. d)
4 = (simhry T W((smh’) At
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where r denotes the geodesic distance from the pole of X and we have

2
7 R:—)lw}.2+(n;1)

in the present case.

5. Concluding remarks

An important tool for the proof of our saturation theorem (Theorem 4) is our
version of the Bochner—Schoenberg-Eberlein theorem (Theorem 3 and its Corollary).
For the connection of the theorems of this type with the extension principle, cf. [22],
[23]. A generalization of the Bochner-Schoenberg—Eberlein theorem for arbitrary
unimodular locally compact topological groups can be found in a forthcoming
paper by E. Siebers.

In addition, we refer to paper [16] that deals with the characterization of L*-
multipliers and continuity theorems of the Lévy type.

Parts of this paper were presented by the junior author at the ¢“Oesterreichischer Ma-
thematikerkongress” held in Vienna, 17-21 September, 1973.
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