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0. Introduction

In this paper some questions of approximation theory in metric linear spaces are
dealt with. We consider certain non-normable spaces like the space C(R) of all con-
tinuous functions on the real line under the topology of uniform convergence on
compact sets. A metric d on C(R) is defined in such a way that the subspaces My,
m=1,2, ..., of polynomials of degree < mare Cebysev sets and there isa numerical
method of calculating for any fe C(R) and any m the unique polynomial p, satis-
fying d(f, pm) = inf{d(f,p): p € My} at least approximately to any prescribed ac-
curacy. Because of the last fact it is hoped that practitians will pay attention to some
special non-normable metric linear spaces and will suggest applications where
a metric is a natural measure of the error while 2 norm is not suitable. This would
undoubtelly stimulate further research on approximation in metric linear spaces.

The investigation of questions of approximation theory throws new light on
metric linear spaces. It was from the approximation-theoretical point of view that
new notions such as cylindrical semiquasinorms or norm-like quasinorms have been
defined and large classes of metric linear spaces has been introduced such as the
class of locally cylindrical spaces or the class of spaces which will be described in
Section 1. It is possible that these definitions and classes will turn out to be useful
also in connection with other questions than approximation-theoretical ones.

A metric linear space (E,d) is a linear space E together with a translation-
invariant metric d, i.e.

d(x+z,y+2) = d(x,5) (x,y,z€E),
such that the linear operations are continuous with respect to d. We shall consider
real linear spaces E only. Let R denote the set of real numbers. The metric d gen-
erates a functional [-| on E by |x] :=d(x,0) (x €E). It has the following
properties:
For all vectors x,y € E and for te R

Qo) x| =0=>x=0,
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Q) 0< [x] = [—x[,

Q) [x+yl < |x]+]y,

and

Q3) lim |tx] =0
1440

and for each sequence (x;) in E and each te R

Q) |x;] = 0= |tx;] = 0.

A functional f on a real linear space E which satisfies all of the conditions (Q;)
(G=0,...,4) will be called a guasinorm (several systems of notation are used; we
follow [29]). Any quasinormed space (E, f) is also a metric linear space (E, S =),
and the term quasinormed space (E, | - |) will be used instead of metric linear space
(E) d)' *

Two examples of quasinorms in the real plane E = R2, namely

%]+ 1]
1+ [x]+2]y]

1Ge, M)l = min{(x*+y*)"2, 1+exp[— (x*+ 22},

show that the closed balls in a quasinormed space are not necessarily convex, bounded
(in the topological sense), connected or similar to each other. Furthermore,

1@, > inf[2, »)y = 1,
y'eR

G, Py 2= and

ie. there is no point on the y-axis that is nearest to the point (2, 0).

1. Proximinality of finite-dimensional subspaces

A non—empty subset 4 of a quasinormed space (E, |- [) is called proximinal if for
each x e E there is at least one element u, € A such that

[x—up| = inf [x—u} = : dy(x).
ued

An element u, € 4 which satisfies this equality is called the best approximation of x
in A. It easily follows by an argument of compactness that each finite-dimensional
linear subspace in a normed space is proximinal. In the example (R2, |- |,) of the
preceding section, however, the y-axis is a non-proximinal subspace, and the other
space (R?, |- |,) contains no proper proximinal subspace at all. Thus it is a natural
task to find classes of quasinormed spaces in which each finite-dimensional linear
subspace is proximinal. Two such classes have been described in [3], [4], and [13].
We are going to define a class that contains both those classes.

Let E be a real linear space. A functional f on E which satisfies the conditions
Q) j=1,...,4, above is called a semiquasinorm. Let us call a semiquasinorm f
on E cylindrical if for each x e E and all s, e R the implication

@) 0<s<t= flsx) < fltx)
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holds and if there is an f* €]0, +00] such that for each x € E

0 if f)=0,
Q9 { o if f(x)> 0.

The notion of a cylindrical semiquasinorm is justified by the fact that

{x€eE: f(x) <r} = {y+z: p,z€E,f(») < r, and f(z) = 0}.

Let (S, X, p) be a measure space such that there is at least one measurable
set of positive finite measure, i.e. aset 4 € X with 0 < u(4) < co. Let (45(- 2+ ))ses
denote a family of cylindrical semiquasinorms on a real linear space E, such that
for any non-zero vector x the function @(x, -) is measurable and different from 0
on a subset of a positive measure.

THEOREM 1. The set

lim f(tx) =

1o+

E:= {ero: |x] = Sq)(x, s)d,u(s)<oo}

is a linear subspace of E, and |- | is a quasinorm on E.:

The conditions (Qj), j = 0, ..., 4, are verified for [- | by a straightforward cal-
culation. An example of such a space is the space S(0, 1) of the (equivalence classes
of) Lebesgue-measurable functions (a.e. on [0,1] equal to each other) on [0, 1]
under the quasinorm

1

1x(2)]
i = § ety @

b
More generally, the class of ®-spaces described in [3], [11], or in [13] is contained
in the class described in the theorem.

The proof of the proximinality of finite-dimensional subspaces in P-spaces
given in [3] can be used in the more general class, too. )

THEOREM 2. Let (E, |- |) be the quasinormed space of the preceding theorem.
Then each finite-dimensional linear subspace of (E, | |) is proximinal.

Sketch of the proof. Let M < E be an m-dimensional linear subspace, let xe
E\M, and let (u)) be a sequence in M such that

m r—u| = du(x).

If (u;) contains a convergent subsequence, then its limit is a best approximation.
Thus let us assume that (u;) contains no convergent subsequence. Then there

are p < m linear independent wy, ..., W, € M and there is a subsequence (u;,) such

that wy, = A Wi+ ... +AxpW,+7, where for each ge {1,...,p} the sequenge

(Ag) increases unboundedly and

1
Vg 1= —};—(lk_q+1wq+1+ e A, pWpH0) > 0
q

and where (v)) is a convergent sequence in a complementary subspace M; = M of
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the span[w,, ..., w,]. Now S is decomposed into
Ay 1= {se8: D(wy,s) >0},

4y = {se8: (W, 5) >0 = DB(wy_y,5) = ... = D(wy,5)},
9=2,...,m,
and
Ao 1= S\ (41U ... U4y).
Then we get

2
[x—1,] = Zl S Dx— Ag(Wy+0rg) , Sldu(s) + S D(x—vy, 8)du(s).
q=1Adq Ao
Using the cylindricity of the semiquasinorms @(-, s) as well as the continuity of
any semiquasinorm on finite-dimensional subspaces with respect to the norm top-
ology, we get

klirg ds[x_}‘kq(wq-l"vkq)’ 5] = P=(s) (s €dyg=1,..,p)
and
}(im |x—u;| = S D=(s) du(s)+ S D(x—limoy, $)du > |x—lim vy
~© Aoludy Ao |
i.e. limwv, is the best approximation of x.
COROLLARY. Under the additional assumption that

[ B, 9duts) < [ P5)ducs)

4 4

holds for all measurable sets A of positive measure and for all ue M, we see Jfrom
zthe proof that each sequence (u;) satisfying (1) contains a converging subsequence.
i.e. M is approximatively compact (see [10]) and the metric projection on M has a prop:
erty of continuity (see [24]).

A measurable subset 4 of positive measure is called an afom if it contains no
measurable subset B such that 0 < u(B) < u(4). The measurable functions D(x, - )
are constant a.e. on each atom 4; thus their value on A will be denoted by @A’(x)
If an atom A has infinite measure, then we have @4(x) = 0 for all x e E and the‘
atom can be omitted. Thus we shall assume that each atom 4 has a positive finite
measure fi. In accordance with the integration theory, two atoms 4’ and A" will
be identified if (4'0A")N\(4'nA") is a set of measure zero. If that is 5o, different

atoms are disjoint sets. i i
atoms j If the measure space (S, £, ) = (u)4ew is purely atomic

Z@fm < 00,

then & is a countable set and the s i is j
pace (E, |+ |) in Theorem 1
class considered in [4]. The cylinders m 113 Just & space of the

{xeE: d,(x) < &}, Aed,e>0

©
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form a basis of neighbourhoods of o in E. Thus we shall call these spaces locally
¢eylindrical. Any metrizable locally convex space (E , ( p,.)) becomes under the usual
quasinorm

R —n_Pn
2 [+ ]y = Zz ﬁ_}—n‘
a locally cylindrical quasinormed space.

We have seen that the spaces described by Theorem 1 form a large class of
quasinormed spaces. It would be interesting to find metrizable topological linear
spaces which are not isomorphic to a space or to a subspace of a space of this class.
Another question is whether each metrizable topological space is isomorphic to
a quasinormed space in which each finite-dimensional subspace is proximinal. The
examples in the introduction suggest still another question: Does there exist for
any finite-dimensional linear subspace M in an arbitrary quasinormed space (E, |- [)
a positive number r > 0 such that for any xe E the inequality dy(x) < r implies
the existence of a best approximation of x in M ?

2. Norm-like quasinormed spaces

Let us say that a subset M of a quasinormed space (E, | * |) uniquely approximates
if for each x e E there is at most one best approximation in M. The question whether
a given linear subspace uniquely approximates can be rather difficult even in normed
spaces. There is, however, a result due to M. G. Krejn which can be generalized to
quasinormed spaces. In a real normed space (E, || D), each (one-dimensional, finite-
dimensional) linear subspace approximates uniquely if and only if the unit ball is
strictly convex, i.e. ||x+y|| < 2 for any two different unit vectors x, y in E. The
second example in the introduction is a quasinormed space in which each linear
subspace uniquely approximates but not all of its balls are strictly convex. The
following theorem is due to A. L Vasil'ev [26].

TucoreM 3. Let (E, |- |) be a real quasinormed space of a dimension > 2 such
that there is an integer n > 1 such that for each n-dimensional subspace M = E
and each r > O the balls {x e M: |x| < r} in M are connected. Then the following
statements with arbitrary k, me {1,2, ..., dimE—1} are equivalent to each other:

(i) each linear subspace approximates uniquely;
(iiy) each k-dimensional linear subspace approximates uniquely;

(ili) each m-dimensional linear subspace M is a Cebysev set,.ie. for each
x € E there is exactly one best approximation in M;

(iv) for any pair (x,y) of different vectors in E the inequality E(x+)|
< max{|x], |y|} holds.

The formulation of (iv) is due to Ahuja [1]. The connectedness assumption with
n =1 in the theorem is equivalent to condition (Qs) on |+ [. Under this assump-
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tion the equivalence of quite similar statements was proved in [2]. It is this result
that has led to the following

DEFINITION. A quasinorm |- | on a linear space E is called norm-like if for each
x € E\ {o} the function ¢~ |£x| on the positive real half-line is strictly monotone
and if for each r > 0 the ball

K(o,r)= {xeE: |x| < r}
is convex.

THEOREM 4. Let E be a metrizable locally convex space whose topology is given
by a sequence (p,) of seminorms. Then
n_Pn(%)

1+pa(x)
defines a norm-like quasinorm on E that also generates the topology of E.

3) |x] 1= sup2- (xeE)

The proof is not difficult at all and the theorem can be stated in the same way

for the more general class of metrizable locally pseudoconvex spaces (see [4] or [22]).

The quasinorm (3) reflects topological properties much better than (2) does. Further-
more, (3) is much easier to handle than (2). We have

2
K = E: € —
©,1) ZDl{x SE () < 1—2""}'
The preceding theorem is the first step to answer the question: whether there are

non-normable quasinormed ‘spaces satisfying condition (iv) in Theorem 3. An
affirmative answer is given by

THEOREM 5. Let E be a separable metrizable locally convex space. Then the
topology of E can be generated by a norm-like quasinorm whogse balls are strictly
convex if and only if there is a continuous norm on E.

Proof. The condition is obviously necessary, since a seminorm is a norm if
its unit ball is strictly convex.

Let a continuous norm exist on E. Then the topology of E can be described
by a sequence of norms || - ||, || - ll25 ... The separability of E implies the separability
of the normed spaces (Z, || - [l 7= 1,2, ... It is well known that then there are
norms ||+ |3, 7= 1,2, ..., on E such that the unit balls of the norms || |3 are
strictly convex and such that for each n the norms ||+ ||, and ||+ ||2 are equivalent
(see [9]). The quasinorm defined by (Ii |I}) according to (3) satisfies (iv) in Theorem
3, since its balls, as finite intersections of strictly convex sets, are strictly convex.

Problems of approximation become fairly simple in norm-like quasinormed
spaces, since they can be reduced to problems in normed spaces. Each ball X(o, r),
r >0, in a norm-like quasinormed space (E, |- [) is the unit ball of a seminorm
P®. Thus each norm-like quasinormed space (E, |- |) corresponds to a family of
seminormed spaces (E, p™) or to a family ‘of normed spaces (E®, [ 11¢), where
E® := E/kerp™ and || |I® is the norm induced by p. In this way it becomes
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evident that each finite-dimensional subspace of a norm-like quasinormed space is
proximinal.

ExaMPLE. Let s be the space of all sequences x = (&,) of real or complex
numbers. Under the norm-like quasinorm

[&al

[y—" -

[x| ;= sup2 T4 ]

the space (s, |- |} has the remarkable property that each closed linear subspace is

proximinal. .
This can be proved by reduction to the finite-dimensional case, since for any
closed linear subspace M and any x e s\ M there is an integer k such that

=31 2 dy(x) >27%1  (yeM),

i.e. the coordinates &—1n; (j > k) of x—y do not influence the value |x—y|. This
example, in connection with R. C. James’s characterization of reflexivity of Banac?n
spaces by proximinality of their closed hyperplanes, has stimulated further i.nvestl-
gations of proximinality of closed linear subspaces by K. Floret and M. Wriedt. It
has turned out that the reflexivity of a complete metrizable locally convex space E
is only a necessary condition for the existence of a norm-like quasinorm on E whic'h
generates the given topology and with respect to which each closed hyperplane is
proximinal (see [12]). The following example has been taken from [28].

ExaMPLE. Let E be a non-normable metrizable complete locally convex space
whose topology is described by a sequence (|| ||,) of scalar product norms and let
|+ | denote the norm-like quasinorm defined by the || - [|,’s according to (3). Then
the ball X(o, 4) in (E, |- [) is just the unit ball of |- [|;. The completion E, of the
normed space (E, || - [|,) is different from E because of the open mapping theorem.
Let x € E;\E. Then

H:= {J’GE: W, =0}

is a closed non-proximinal hyperplane in (E, |- |). Let E,, n = 1,2, ..., denote the
completion of (E, || ||»). Then

e Il
[l 2= sunp?- T+ 1%l

o0
is a norm-like quasinorm on [ E,. Each closed hyperplane of the space
nel

= .
(11 E., I ]w) is proximinal, but the image of H under the imbedding y — (v, », ...)
n=1

is a non-proximinal closed linear subspace. .

This example shows another difference between Banach spaces and complete
norm-like quasinormed spaces, since all closed linear subspaces of a Banach space
are proximinal if all closed hyperplanes in it are proximinal.
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3. A computational method

The theoretical background of the method of computing best approximations in
a finite-dimensional CebySev subspace is the following

THEOREM 6. Let (E, | |) be a norm-like quasinormed space. A finite-dimensional
subspace M is a CebySev set if and only if M is a Cebyfev set with respect to all
the seminorms p®, where r € {dy(x): x € EN\M} =: Iy.

The proof is not difficult at all. If M is a CebySev set, then the restrictions
p®|M of the seminorms p™ onto M, r € I, must be norms. Therefore we have
the following

COROLLARY. A finite-dimensional linear CebySev subspace M in a norm-like
quasinormed space is approximatively compact, and thus the metric projection onto M
is continuous.

The approximative compactness follows from the approximative compactness
of finite-dimensional subspaces in normed spaces and from the fact that in any
finite-dimensional norm-like quasinormed space (E, | - |) (e.g. the space of x and M)
for each 7, > 0 and for each A > 1 there is an r > r, such that K(o, r) € AK(o, ro)
= {Ay: ye K(o, r)}.

Remark. At the Conference on Approximation Theory held in Kaluga 1975 A. L.
Vasil'ev announced a quasinorm in the real plane with respect to which the x-axis
is a Cebyfev subspace but not an approximatively compact one.

EXAMPLE. For any real p > 1 and for any integer m > 1 the set M,, of poly-
nomials of degree < m is a CebySev set in the space Lf,,(R) under the quasinorm

1 Lo¢en,my
L+ 1/ eenmy
since the condition in Theorem 6 is satisfied.

|f] = sup2~"

THEOREM 7. Let M be a finite-dimensional lnear Cebysev subspace in a quasi-
normed space (E, |- ), where | | is a norm-like quasinorm of type (3). If for each
rely = {dy(x): xe E\M} there is a procedure P, of calculating for any x € E the
best approximation of x in M with respect to the seminorm p® at least to any pre-
scribed accuracy and if for x e E\M there is a rough approximation v, € M such
that

roi= |x—v,| €Iy,
then the following iteration method is convergent. Let ry_, be the number obtained
in the (k—1)-th step; then P, _, is applied to calculate v, € M such that

L2

2-k+1
P(”"l)(x—w,,) < dg,,_,)(x) +

’
k-1

where dip(x) = inf{p(x—v): v e M}, and r, := min{ry_,, [x—v/}.

The decreasing sequence (r) converges to dy(x) and the sequence (vy) converges
to the best approximation of x in M.

icm
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For the proof see [6]. For quasinorms of type (3) the inclusion

@
holds for any 0 < s < 1. It plays an essential role in the proof. From (4) the estimate
rdfP(x) < du(x)  (r > dy(x))

K(o,5) = %K(o, 1)

is obtained.

4. The space C(R)

Let C(R) denote the space of all real-valued or complex-valued continuous functions
on the real line R. The topology of uniform convergence on the compact subsets
of R is described by the sequence (p,) of seminorms p,,

Pa(f) 1= max [f(1)],
|t|<n

or, equivalently, by the norm-like quasinorm (3). Concerning the existence, uni-
queness, or characterization of best approximations in finite-dimensional subspaces,
the quasinormed space (C(R), |- [)behaves very much like the Banach space C(0, 1)
under the supremum norm. The quasinorm |- | on C(R) corresponds to a family of
weighted supremum seminorms

PO>f) 1= max @) L)
with weights

—1——1 if n—1<[t] < n for each n satisfying 2"r < 1,
() = 2'r
0 if  |t] > max{n: 2"r < 1}.
Defining )
Spi={teR: o)1/ =1} (Fe CRONOD,

we have the Kolmogorov criterion, namely
THEOREM 8. A function g in a linear subspace M < C(R) is u best approxi-
mation of fe C(RYNM if and only if the inequality
min Re[f(£)—g(®)h() <0
teSr-yg

holds for each he M.

THEOREM 9. A finite-dimensional linear subspace M is a Cebysev setin (CR), |- |)
if and only if each function ge M\ {0} has at most dim M—1 zeros.

THEOREM 10. Let M be an m-dimensional linear CebySev subspace M in the
space (C(R), |- ) of real-valued functions. Then ge M is the best approximation of
fe C(R\M if and only if the set S;_, contains at least m~+1pointsto < 1y < ... < I
such that

sgnl f(ti— ) —glte— )] = —senlf(t)—g)] (k=1,2,...,m)

holds.
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The proofs of all the three theorems are quite similar to the proofs of the cor-
responding theorems in C(0, 1) (cf. [18]). For any m the subspace M,, of polynomials
of degree < m, in particular, satisfies the so called Haar condition in Theorem 9.
Because of the alternation Theorem 10, the Remez algorithm can be adapted to
the seminormed spaces (C(R), p’). In connection with Theorem 7 there is a com-
putational method of calculating the best approximation approximately.

5. Sequences of linear subspaces in quasinormed spaces

For each function f of the space (C(R), | - |} a module of continuity can be defined
by
we(0) := sup, [f~fC—=m (>0

in close analogy to the module of continuity of a continuous periodic function.
A further analogy is the inequality of the Bernstein type

Ip'| < 2degp|p|

for the derivation p’ of a polynomial p. Thus one can ask about the connections
between the modulus of continuity w, and the rate of convergence to zero of the
distances d,(f) of f from the subspaces of polynomials of degree < n, n =1, 2, ...
It should be remarked, however, that the analogy to the periodic case is not too close.
For instance, the quasinorm |- |, unlike the supremum norm of a periodic function,
is not invariant under translations f +» f(+ —A4). A definite difference between the
space (C(R), |- |) and the space of continuous 2n-periodic functions under the
supremum norm appears in .

THEOREM 12. Let (gn) be a sequence in C(R) such that for each n= 1,2, ...
the functions g, ..., gn are linearly independent and such that the linear space D
spanned by all g, is dense in (C(R), | - |). If there is a continuous seminorm on C(R)
whose restriction onfo D is a norm, then there is no sequence (A;) of continuous
linear operators

'A'J: C(R) s Span(gla ey gru)

such that im A; f = f for all f in (C(R), |*]).

In [6] for any given sequence (4,) a function f, € C(R) has been constructed
such that (4; fo) does not converge to f. The functions g,() = ", n= 1,2, ...,
satisfy the conditions on g, in the theorem. This result seems to be of some interest
in connection with approximation processes in locally convex spaces. This topic
has been taken up recently (see [8]).

A Jackson type theorem for measurable 2n-periodic functions f on R such that

2r
flp:= { 1fCaPdx < o0,
0
where p €10, 1[ is a fixed number, with respect to the quasinorm | - |, was announced
by V.I. Ivanov [14] at the Conference on Approximation Theory held in Kaluga
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1975. He also pointed out that that the Jackson type theorem in which derivatives
of f appear does not hold in L,, 0 < p < 1.

Let (M) be a sequence of linear subspaces in a quasinormed space (&, |- |).
The sequence is said to approximate rapidly if there is a decreasing null sequence
(4;) of non-negative numbers such that

duy(x) = O(ay)

for each x € M; otherwise it is said to approximate slowly. Modifying a negative
approximation theorem of Bernstein, H. S. Shapiro [23] has shown that each se-
quence of proper closed linear subspaces in a Barach space approximates slowly.
His proof is based upon Baire’s category theorem and can be generalized to the
proof of

THEOREM 13. A sequence (M) of linear subspaces in a complete quasinormed
space (E, | |) approximates rapidly if and only if

4 lim sup dar,(x) = 0.
JooxeE

Although the condition is formulated completely in metric terms, it is a topo-
logical linear property (see [5]). In [5] we can also find the proof of

THEOREM 14. The space (s, |- |) from the first example in Section 2 is, up to
isomorphy, the only infinite-dimensional locally cylindrical guasinormed space in which
there is a rapidly approximating sequence of finite-dimensional subspaces.

" In a forthcoming paper [7} the following theorem will also be proved:

THEOREM 15. The space (s, | |) is up to isomorphy the only infinite-dimensional
®-space in which there exists a rapidly approximating sequence of finite-di ional
subspaces.

Thus the question arises whether the existence of rapidly approximating se-
quences of finite-dimensional subspaces characterizes the space s within the class
of complete quasinormed spaces introduced in Section 1 or even among all infinite-
dimensional complete quasinormed spaces. -
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1

Let n be integers, S the real line (— o0, ) or the half-line [0, o). Denote by W,(S)
the set of functions xe C = C(S) such that x™eL, = L,(S). It is known
(G. H. Hardy, J. E. Littlewood [7], L. Neder [11]) that functions from W,(S)

satisfy for 0 < k < n the inequality

(1.1 1x®lle < GlIxliE"Ix™](E,

where G = G(k, n, S). A. N. Kolmogorov [8] has calculated the least constant G
in (1.1) on the whole line S = (—00, ). A corresponding result for the half-line
is known only for n = 2 (E. Landau [9], J. Hadamard [6]) and for n = 3 (A. P. Ma-
torin [10]); in particular, the Landau-Hadamard inequality has the form

(1.2) 2V Txle [ lIzop -

[1%1le <

Estimates of the constant G for S = [0, ) were given in papers of A. Gornyr
H. Cartan, A. P. Matorin, S. B. Stechkin and etc. (for references see [14]); pape.
[12] of I. Schoenberg and Al. Cavaretta deals with the calculation of the best constant,

In this note inequality (1.1) is considered for derivatives of not necessarily integer
order on the half-line S = [0, o). The value of the least constant G is calculated
here for small k, n; in the general case lower and upper estimates for G are given.

The notion of integrals and derivatives of arbitrary order has been introduced
by J. Liouville, B. Riemann and in the periodic case by H. Weyl. The subject has
been considered by G. H. Hardy, J. E. Littlewood, H. Kober and others; detailed

references may be found in H. Bateman and A. Erdelyi [1].

One of the following two operators is called integral of order o > 0:

1) 0O = 755 | =0y,
1.4 G20 = 755 Y e oD,

B [19]
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