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1. Introdaction

In a preceding paper [5] the authors have applied some Bochner—Schoenberg-
Eberlein type theorems for locally convex topological vector spaces to some cha-
racterization problems of harmonic analysis on locally compact groups and locally
convex vector spaces. It is the objective of the present note to provide some further
applications of this method. Section 2 deals with interpolation in Hardy spaces
modelled over globally symmetric Riemannian manifolds whereas Section 3 is
concerned with the Fourier transformation associated to a differential operator of
the Sturm-Liouville type that is also closely related to globally symmetric Riemann-
ian manifolds.

2. Interpolation in Hardy spaces over symmetric manifolds

Let G denote a connected semisimple Lie group with Lie algebra g. We shall keep
to the notations and®conventions introduced by Helgason [10], [11]. In particular,
let g = I+p be a fixed Cartan decomposition of g and X the analytic subgroup
of G with Lie algebra ¥ = g. Suppose for convenience that the center of G is finite.
Then K is a maximal compact subgroup of G and the space G/K of left cosets
{gK: g € G} equipped with the Riemannian structure induced by the Killing form
of g is a globally symmetric Riemannian manifold.

Let g, be a maximal Abelian subspace in p and if 4: a, - R is a linear form,
put

ot = {Xegq: [H,X]= AMH)X for all Heq,}.

Fix any Weyl chamber a; in a,. It is well known that with i there is associated
an ordering of the restricted roots. Put

1 .
n= E g e=7 E (dimgH 1
A>0 is0

o [83]
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and let 4, , N denote the analytic subgroups of G corresponding to a, and 1, respect-
ively. Then the Iwasawa decomposition
G = KA, N
holds by virtue of the analytic diffeomorphism
Go g~ k(g)exp H(g)n(g) € KA, N

Let 3#°(G/K) be the complex vector space of harmonic functions on G/K, i.c., the
space of all complex-valued functions f € ¢&(G/K) such that Df = 0 for every
G-invariant differential operator D on G/K that annihilates the constants. For each
exponent p e [1, +éof let the complex vector space

#7(@GIK) = {fe #(G/K): sup | flkaK)lrdk < + o}
aed,
be endowed with the norm (letting A} = expay)
For ity = sup (1y@arypak)” = sup (§17earorrae)””
acdy 'K . aeA;' K

Moreover, the complex vect(;r space #°(G/K) = # (GIK)n¥%(G/K) of all bounded
harmonic functions on G/K will be equipped with the Cebysev norm e | fllw
= sup |f(gK)|. See Stoll [14].

In order to investigate the mterpolatlon problem in the Hardy spaces H#*P(G/K),
pe[l, +o[ (harmonic interpolation), it is necessary to have at hand the Poisson
kernel.

Let M denote the centralizer of a, in X and X/M the Furstenberg-Moore bouud-
ary of G/K. The Poisson kernel is given by

P: GIKXKIM 2 (gK, kM) ws e=2(H(g*R),
It should be observed that the function gK ~ P(gK, kM) belongs to #(G/K) for
every point kM e K/M.

Denoting by Diff(G/K) the set .of all differential operators on the globally
symmetric Riemannian manifolds G/K, we have the following

THEOREM 1. Retain the above notations. Let the exponent p € [1, +oo[ with
dual exponent p', the set T = G/K x Diff(G/K), and the function ¢: T — C be given.
In order that there shall exist a function f € #*(G/K) such that || f]l, < M and

Df(z) = 9(2)
for all (z, D)e T, it is necessary and sufficient that the inequality

’ ‘ Z CJ*P(ZJ)|<MH Z CijP(ZJ:-)H,,
153y 1428

holds for all finite sequences (cj)i1<j<n in C anoli ((z;» D))1<s<n of pairs of T.
Proof. Let E = #*(G/K). If p > 1, construct the complex Lebesgue space
LE'(K/M) with tespect to the unique K-invariant normalized Radon measure u €
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Mc(K/M) on the Furstenberg—Moore boundary of G/K, Then we put

_{L’C'(K/M) if p>1,
° T\ %ok/M) if p=1.

For any function fe 3£7(G/K) let v, € # c(K/M) denote the representing measure
of f. It is well known that in the case p > 1 the Radon measure », admits a Radon~
Nikodym density with respect to the base x that belongs to L?(K/M) and that

fK) = § PGk, kM)dv, (kM)
KM
holds for all points z = gK e G/K. Consequently,

Dfgk) = | DP(gk, kM) (M),

KM

for any D e Diff(G/K). It follows that the mapping
T3 (z, D)~ (E3f~ Df(z) € C)

is an embedding of T into (E, o(E, Eo)) An application of Theorem 2in [5] com-
pletes the proof. m

COROLLARY. Let (z,)s»1 denote a sequence of points in G/K and (Wp)n>1 @ Se-
quence in C. There exists aﬁmctionfe HP(GIK),pe[l, +oof, such that|| fll, < M
and f(z,) = wy for all integers n > 1 if and only if the inequality

|22, el < m] X5 arenl,

holds for all finite sequences (cj)i<jen in C.

Of course, Theorem 1 is applicable to the case of harmonic functions on bound-
ed symmetric domains in the complex vector space C". In this connection also see
Hahn-Mitchell [9].

3. Applications to a differential operator of the Sturm-Liouville type

Let us consider the ordinary differential operator of the following form:

L= —li(/i—d—) &> 0),

A dx dx

where the real-valued coefficient function A4 is defined on the real half-line R, and
satisfies the following conditions (see Chébli [1]-[4]):
(1) A(0) = 0, 4(x) > O for x > 0. There exist numbers & > 0, « > 0 and an
odd real-valued function B € ¥°(R) such that
4'(x)
A()
holds for all x € J0, e[ (“Condition of regularity”).

= % +B(x)
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. . . A
(2) A is a nondecreasing monotonic function such that lim A(x) = +o0; =
X 00
1 A'(x)

exists (“Condition of

is a nonincreasing monotonic function and ¢ = lm —-
xo0 2 A(x)

convexity”).

ExampLEs. (i) Denote by Ip(R") the neutral connected component of the group
of all isometries of the real Euclidean space R" (n > 2). Then I,(R")/SO(n) = R*
is a symmetric Riemannian manifold of Euclidean type. The radial part of the
Laplace operator of R” is given by

A\ =1 d
"°=(7j;‘)+ PR

If A: r~e =t (r > 0), then L = — 4, takes the form indicated above.

(i) Let M = G/K be a symmetric Riemannian manifold of noncompact type
and rank one. The the function A: x w- (sinhx)”. (sin2x)? yields for suitable ex-
ponents p, g > 0 the radial part of the Laplace—Beltrami operator on M and satisfies
conditions (1), (2) supra. See Flensted-Jensen [7] and Flensted-Jensen and Koorn-
winder [8]

The differential operator L is formally self-adjoint in the complex Hilbert space
L*(R,, Adx). Let

dom(L) = {u € I*(R,, Adx): Lu e L*(R,, Adx), lin;A(x)% = 0}

be the domain of L. Then the operator (L, dom(L)) is self-adjoint, its spectrum
is contained in R, and jts continuous part is the interval [e% + o[. Moreover,
any solution @ of the differential equation

ID—s. D=0

which satisfies the conditions

(s> 0),

dj(ox S) = 1’
d
—EIP(O, s5) =0,
verifies the estimate
o 1B(x, )| < l+x)e  (se[o? +oo)

with a suitable constant ¢, > 0 (Chébli [3]). The Fourier-Stieltjes transformation
& associated with the operator (L, dom(L)) admits the form

Fr: MR, 5 pom (Ry 35 § B, )du)) -
R

THEOREM 2. Suppose @ > 0. Let § < Jo?, +oo[ be a set having at least one
cluster point and let the function f: S — C be given. In order that there exists a unique
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measure v € M (R.,) such that f = F1v on S and ||v|| < M it is necessary and suf-
ficient that the inequality

| 2 afeo] < m] 3 aot.m],

holds for all finite sequences (ci)ick<n in C and (xh<ken in S.

Proof. Let E = %o(R.) be the vector space of all continuous complex-valued
functions on R, vanishing at infinity. Equip E with the topology of uniform con-
vergence. Then its dual is the space E’ = #*(R,) of all bounded complex Radon
measures on R, . Choose Ao = {®(.,s): seS}andletp: 443 D(.,85)~ f5)eC,
(s € 5). An application of Theorem 1 of [5] which is possible by (1) yields the ex-
istence of a measure » € 1(R,) such that f(s) = Fiv(s) for s S and || < M.
Since Jo?, + oo 2 5w @(x, 5) is an analytic function for any x € R, it follows by
the Lebesgue-Fubini theore}n and by Cauchy’s formula that the function

8w Fro(s)
is analytic on the open interval Jo2, +co[. Hence the uniqueness of ». m

COROLLARY. In particular, the function f can be extended holomorphically into
the subset £ = {s = y+if € C: B> < 4oy} of the complex plane C.

Define the translation operators (Chébl [1}-{4])

T°: L*(R,, Adx)3 fw T’fe L*(R,, Adx)
according to

FUT): s P, 5)F1f(s)  (WER).

Then ||T?)| < 1 for all points y € R,.. Let 9(R) be the Schwartz space of complex-
valued test functions on R and D,(R) its subspace of all even test functions p €
9 (R). Then we have

jx+7]

i) = | RTINS eRy)

lx=y
with piy,y € A1 (R), Supp(s,y) < [Ix—7l, jx+y] and pe,y = fy,x (Chébli [3]). The
translation operators (I7)y o enable us to define the following convolution product

frg: x o S T(5) -8 A dy
R+
on Do(R). Then L' (R, Adx) becomes a commutative senﬁsingple convolution algebra
over C with spectrum X(L*(R.., Adx)) = {P(.,5): s€ Z}. Moreover, denote
by Mult(L*(R,, 4dx)) the commutative Banach algebra of all multipliers on
I'(R,, Adx),i.., of all continuous linear mappings T: L'(Rs, Adx) » L*R,, Adx)
such that

T(f+g) = (Tf)*g
holds for all pairs f, g of L*(R,., Adx).
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THEOREM 3. Let T: L*(R,, Adx) - L*(R, , Adx) be a continuous linear mapp-
ing. The jfollowing statements are pairwise equivalent:

() TeMult(IMR,, Adx));
(i) There exists a measure v € M (R.) such that
T: L*(R,, Adx) 5 g = vxg;
(iii) T Tg = T o Tg (Wendel condition) for all x€R.., g € L'(R.., Adx);
(iv) There exists a bounded and continuous function f: X — C with
[ FL(LR,,4d0)) = 5"1:(L1(RJr , Adx)).

Proof. (i) = (ii): Fix T e Mult(L'(R.., 4dx)). Let {u,: n e N} be an approx-
imate unit for L*(R,, 4dx) such that I|u,,||1 =1 for all n e N. Define the linear
form

pn: Go(R)2g > \ g. (Tu)ddx e C.
R, -
It follows ||u,|| < ||T|| for-all n e N; Hence by Alaoglu’s theorem {u,: n e N} is
a relatively compact subset of #*(R,) with respect to the vague topology. Let the

subsequence (fy)key converge vaguely to the measure » e.,ﬂl(R*) It suffices to
prove that

Tg = vxg
holds for all functions g € 2,(R). In order to do this we shall establish the identity
@ § 7. (g)adx = (. org)ddx
Ry R

for all f'e D,(R). Let ¢ > 0 be given. There exists N(¢) € N such that for n > N(e),
|1 £ Tung) ddr— | fong) Adf
R, R,

- \RS &) (RS T*(Tu) (2) . g (2) AD)dz) A(x) dx—
- {70 (§ )b ) @)
R, R,

= \RS 10§ Tu0)dus )80 AR dz) A dx—

Ry %R,

- RS (| e@due. @) b)) AR x|

Ry XR,
= |RS Tu0) . ) A0)B~ §Ho)b0) < £,
+ R,
where A is defined in the following way:

B2k y— | D@ du, -0 AR dx.

Ry XR,
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Observe that we have used the Lebesgue-Fubini theorem and the symmetry pro-
perties of the measures di., ,(2) A(¥)dy (Chébli [3]). Likewise the number N(g) may
be chosen such that

iSf- T(uyrg) . Adx— Sf T Adx| < Ilfllo - I llwg =1y < 2

holds for n 2= N(s).
Consequently, we obtain

]RSf. (eg) Adx— RS f TR Ad] <.

Since ¢ > 0 was arbitrary, the statement (2) follows.

(i) = (i): trivial.

(i) = (iii): Observe that T e Mult(L*(R,., 4dx)) holds for all x & R, . Con-
sequently, there exists a measure v, e.,lll(R+) such that T*g = ».+g holds for all
ge L}(R,, Adx). Hence

T(T*g) = T(rxxg) = vx(vaxg) = (v*vx)*g
= (xwv)rg = vyux(vxg) = T*(T})
for all gel? (R, , Adx).

(iii) = (@): Letf, ge L*(R,, Adx) and he L*(R, , Adx) be arbitrary functions.
Then

{ T(pg) b adx = § (Fog) T ddx
Ry Ry

T/0) . g(y)A(y)dy)'Mx)A(x)dx

Il

R, (R+
g

§ 701 ThG) AG) dx)2 () AGYdy

R+ Rs

§ (§ A0 The) 4G dx) g () AGY dy

R: R4

[ (§ 727N h(x) A0 dx) 20) 4G) dy

Ry R.

§ (§ @) @he) 4G dx)0) 40)y
(

I

§ 7@ 0)20) 40) dy) h) A dx

Ry R,

§ (1) @) - B A dx
Ry
by the Lebesgue-Fubini theorem and the symmetry of the measure fi,y in (x, )
(cf. Chébli [3]).

(i) <> (iv): See the general results for semisimple commutative Banach algebras
proved by Larsen in Chapter 1 of [12], [13]. =

]
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COROLLARY. Suppose ¢ > 0. Let S < Jo?, +oo[ be a set having at least one
cluster point and let the function f: S — C be given. If the inequality

|1;chf(xk)' < M“];ch‘ﬁ( . xk)”w

holds for all finite sequences (Ci)1<r<n in C and (X)1<k<n in S, then f may be ex-
tended to a unique function f: 5 = C that satisfies condition (iv) of Theorem 3 supra,
Proof. The conclusion follows by Theorems 2 and 3. m

4. Concluding remarks

. The fact that in Section 2 the Furstenberg-Moore boundary K/M of G/K is compact
and that in Section 3 the eigenfunctions @( ., 5) (s = ¢?) of the differential operator
L are decreasing at infinity for ¢ > 0 according to (1) implies the direct applicability
of the interpolation theorems proved in [5]. On the other hand, we have indicated
in Section 3 that the Laplace~Beltrami operator of symmetric Riemannian mani-
folds G/K of noncompact type and rank one may be chosen for L. Therefore, these
circumstances suggest an investigation of our situation in the higher rank case and
in the Euclidean type case also. But then the difficulty arises that for arbitrary
symmetric Riemannian manifolds no decreasing properties of the zonal spherical
functions @( ., s) are known, These problems among others will be considered in
the succeeding paper [6).

The research presented here was partly done when the senior author stayed at the VI Ap-
proximation Theory Semester held by the Stefan Banach International Mathematical Center,
Warsaw, Poland, September 17-December 17, 1975. He would like to express his appreciation
to the members of the Center for their warm hospitality during his visit. Thanks are also due to
the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg, for financial support.
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