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1. Introduction and summary

Let S denote a finite set. Consider a (varying) probability distribution p = (p(i)),-es
on S and a (fixed) sequence of stochastic matrices P, = (Pa(i. )i jes, n = 0. These
objects define a nonhomogeneous finite state Markov chain with state space S, ini-
tial probability distribution p and transition matrices P,,n > 0. More precisely,
as is well known, a probability space (2, ", P,) can be set up and random vari-
ables X(n), n > 0, defined on it such that

P,(X(0) = i) =p(i), ieS,
P, (X(n+1) = jIX(), 0 < u< n)
Py(X(n+1) = JIX(w) = p, (X(), 1),

nz0,jes,
P -almost surely.
Let us denote by #™ < A the c-algebra generated by the random variables
Xm),X(n+1),...,n>0,and put 7 = () o™ The o-algebra J is called the
' nz0

tail o-algebra of the Markov chain considered.

This paper is aimed at giving a self-contained account of recent investigations
concerning the structure of the tail o-algebra 7.

Citations in the text have been kept to a minimum. References and various
remarks have been collected in the final section of the paper.

2. Preliminaries

2.1. Given a probability space (2, #, P) anevent 4 € & is said to be a P-atom
if P(4) > 0 and for any event B < 4 either P(B) = 0 or P(B) = P(4). Next,
an event N e & is said to be P-completely nonatomic if for any positive number
¢ < P(B) there exists an event C < B such that P(C) = c. It is well known (see,
e.g. Lodve [14], p. 100) that £2 can be partitioned as o

m Q= Nu(y 4),
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where the event N may be absent and the index set 7 may be empty, finite or de-
numerable; if present, N is a P-completely nonatomic event and, if 7 is not empty,
the 4;, i € I, are P-atoms. The decomposition (1) is unique modulo_pull P-prob-
ability events.

The o-algebra & is said to be P-finite if N = & and the set I is finite. In par-
ticular, it is said to be P-trivial if there is just a P-atom (thus- coinciding with £).

2.2. In the case of the tail c-algebra I~ of a Markov chain (even with a de-
numerable state space) the representation (1) can be constructed as follows.

There exists a sequence (S(n), Simn),rel ),,;o of partitions of the state space S
such that

N =lim{X(n) e S@}, 4, =lm{XmeS.@m}, rel
n—0 - 00
To prove this assertion let us set
Sp(n) = [i: Pp(4,1X() = i) > 1)2], S(m)=S-— U S(m), rel,n>0.

For any n3> 0, the sets S,(n), rel, are clearly pairwise disjoint. Therefore
(S@), S,(n), r e I) is a partition of the state space S for any n > 0. Next, by the
Markov property and the martingale convergence theorem (see, e.g., Lotve [14],
p. 409) '

) E,%PP(A'IX(H)) = },iix;loPp(A,}X(n), s XO) = g4, rel, ‘
P,-almost surely. Here y, denotes the indicator of the event 4, i.c.
1, if wed,
Kalw) = {o, i wéd.
Consequently, modulo null P-probability events,
A, = {o: 'lliirjcP,(A,[X(n)) > 1/2} = iiir:o{X(n) eS@m}, rel,

and it follows that
N= (’Lg 4) = “"f,‘c lxm) e L% S} = lim{X(n) € S()}.

Although tautological [S,(n) is defined in terms of 4,], the above represen-

tation of the events N and 4,, r € 1, is instrumental in proving the main theorem
about 7.,

3. The main theorem

3.1. We are now able to prove

THEOREM 1. The tail o-algebra I of a (nonhomogeneous) finite state Markov
chain is P-finite whatever the initial probability distribution p and the number of its
atoms does not exceed the number of states of the chain.
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Proof. Assume for a contradiction that the chain has s states and the index set
Iin (1) contains more than s elements. Then there would exist ry, ..., re,; €1 such
that for a sufficiently large » one has P,(X(m) €S, (m)) >0, 1< k < s+1. But
these inequalities contradict the fact the chain has s states. This contradiction shows
that the number of the atoms of J does not exceed the number of states of the
chain.

It remains to prove that P,(N) = 0. Assuming again for a contradiction that
P,(N) > 0, there would exist 541 pairwise disjoint events Ny, ..., N;.; € 7 con-
tained in N such that P,(Nx) > 0, 1 < k < s+1. Defining the subset By(n) of the
state space by By(n) = [ ¢ Po(Ni|X(m) = i) > 1/2], we deduce as in Section 2.2 that
Ny = lim{X(n) € By(W)}, 1 < k < s+1. These relations contradict again the fact

n—>w

the chain has s states. Therefore one should have P,(¥) = 0 and the proof is com-
plete.

Of course, it would be desirable to describe an effective procedure to construct
the partitions (S(n), S,(), r€I),n > 0. As we shall see in the next section this
can be done in the homogeneous case (i.e. the case where P =P = (p(,N)ijes
for any n > 0).

3.2. We begin by considering the case of a homogeneous finite state Markov
chain without transient states.

THEOREM 2. Consider a homogeneous finite state Markov chain with no transient
states. Ifits (closed) classes of states are C* with cyclical moving subclasses ch, ...

Ch-1, 11K r, then the P,-atoms of the tail o-algebra I are the events 4t
= {X(O) eCl, 0< s< d—1,1< 1<, for which Z p@) > 0.

IEC:
Proof. For the sake of clarity we shall treat only the case where ZCI p@)>0
ieC!
for any 0 < s < dj—1, 1 < I < r. The reader will be able to modify the proof in
order to make it apphcable to cases where some of the above sums are null.
Let us denote by d the least common multiple of the periods d,1<I<r.

Then for,n large. enough (> ng) we shall have P,(X(nd) = i) >0 for any ieS
(see, e.g., Lodve [14], p. 35). This fact allows us to write

®  RAXGD = 1) = 3Py (A [K(n4nd) = )X = )

= Zp("”(i,j)!’p (41X ((m+m)d) = j),
Je

forany n 3 ny, m > 0, A € 7 and i € S. Next, consider the sequences (P,(A[X((m+
+n)d) = ])) 0 j€S. Since they are bounded, it is possible to find an increasing

m B
sequence (7,)s»1 of natural numbers such that the limits

LmP, (4|X(nd) = j), Jj€S,
S+ 00
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do exist. Let us now remark the matrix PY can be considered as the transition ma-
trix of a homogeneous finite state Markov chain with d, + ... +d, aperiodic classes
and with no transient states. Consequently, on account ‘of a well-known result the
matrix P™ will approach as n — oo-a matrix of the form

0
]Il,d‘—l

].Tr,o
0o
IIrd 1.

where the matrices on the main diagonal are positive stochastic stable (i.e. with
identical rows) matrices.

If we replace m by ng—n in' (3) and let s — co, we conclude that the condi-
tional' probabilities P,(4]X(nd) = i) are independent of n > n, and the vector
(P,,(AEX(nd) = i))i s 18 @ linear combination with coefficients depending on 4 and
Pof d + ... +d, linearly independent vectors with constant components. Finally,
if A is a P,-atom of 7, then there will exist an i & § such that P,(4|X(nd) = i) > 0

forn > no [otherwise it would follow that P,(4) = ZP,,(X(nd)= NP, (A[X(nd)
ies
= i) = 0] and (2) leads us to the conclusion that P(A|X(nd)=i)= 1, nzn
We are now able to prove that if 4, .. A are distinct P,-atoms of 7, then
the vectors o = (P,(Aw|X(nod) = D); m< g, are linearly independent.

ieS?
Indeed, ifmZ=1 Cnm = 0, on account of the fact that P,(4,|X(nod) = i) = 1 for

a certain ie S [implying P,(A,|X(nod) = 1) = ... = P,(4:|X(nod) = i) = 0], we
conclude that ¢; = 0, and in an analogous manner, ¢, = ... = ¢, =
It follows, therefore, that there can be at most d, + ... +d, atoms. Since the

di+ ... +d, pairwise disjoint events A, 0 < s< d; —1, 1< < r, belong to I
[we have 4} = {X(nd) € C! for any n > 0} = lim {X(nd) e C!}] they are; clearly,
N 00

the P,-atoms of 7,

' CoROLLARY. The tail o-algebra of a regular Markov chain (i.e. a homogeneous
ﬁmte. state Markov chain having just an aperiodic class and no transient states) is
P-trivial whatever the initial probability distribution D.

We are now able to consider the general case of a homogeneous finite state
Markov chain with both recurrent and transient states.

1 'E['HEOREM 3. Consider a homogeneous finite state Markov chain having r classes
C' with cyclical moving subclasses Cy, ..., Ci,1, 1 < 1< r, and an arbitrary number
of transient states. Then the P,-atoms of the tail o-algebra T are the events Ak =
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lim {X(nd) e C} for which
R0

PN AR EL

ieS jeCl

0 s<d—-1,1<1<r, where

e ZIP,,(X(nd) =j, X@) #j, 0 < u < ndX(0) = i)
nz

forany d > Oandi,jeS.

Proof. Denote by » the time to absorption in the set of the recurrent states,
ie.

» = min(n: X(WeC'u ... vC).

Clearly, v is a Markov time of the chain considered. On account of the strong Mar-
kov property the sequence (X(n+v) a0 is a homogeneous Markov chain with state
space C'U ... UC" and whose transition probabilities coincide with the corre-
sponding ones of the initial chain (X(n)),,;o. It is easily seen that the P,-atoms of
the latter are precisely the Pz-atoms of the former, where p is the probability dis-
tribution on C* U ... U C” with components

P = P3(X(») =1i), ieC'v
Thus, Theorem 3 obtains from Theorem 2.

COROLLARY. The tail o-algebra of an indecomposable Markov chain (i.e. a ho-
mogeneous finite state Markov chain having just an aperiodic class and an arbitrary
number of transient states) is P,-trivial whatever the initial probability distribution p.

L uC.

4. An application to reverse probabilities

The tail structure established by Theorem 1 can be connected with investigations by
Kpolmogorov [13] and Blackwell [1] concerning the asymptotic properties of the
reverse transition probabilities

P, 5) = PR(X(m) = j1X(n) =
defined for all , j € S [for the sake of clarity we shall assume that Ps(X(n) =i) > 0

), m<n,

foranyn> 0,ieS]. It is easily seen that putting P"“’") = (P™(i,))ies, one
has
(4) P(l-n)P(n—m) = P(l—m) m<n< 1.

Following Kolmogorov let us show that there exist probability dlstnbutxons (row
vectors) p, on S, n 3> 0, such that

(5) Pn ﬁén—m) = Pm>
To this end choose an increasing sequence (si)i»1 of natural numbers such that
the limits :

©)

osm<n,nz0.

A
lim P& = Q(m)
k-0
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do exist for all m > 0. Letting I — co through the sequence (sp)x»1 in (4), we obtain

00 Py = o(m),

In other words, the rows of the same rank of the matrices Q(n), n > 0, provide us

with probability distributions p, on S, n > 0, satisfying (5). Next, if g,, n 2 0, are

probability distributions on S such that ¢,P" ™ = gu, 0 m< n, n> 0, then

denoting by (#;.)i'>1 a subsequence of (sg)x=1 such that the limit /Iim Gy, = q does
! — 00

ogmgn, nz0.

exist and letting k' — oo in the equation g, P ™™ = ¢,,, we deduce that gQ(m)

= g, m = 0. It follows that g,, should be a convex linear combination of the rows
of Kolmogorov’s matrix Q(m) for any m > 0. Consequently, the number of linearly
independent solutions (p,)s»0 of (5) does not exceed the number of the states of the
chain considered.

Now, let us remark that the Markov property being time-reversible, i.e.

P, (X(m) = i|X(w)) = P, (X(m) = i|X(), X(n+1), ...)

P,-almost surely for any 0 < m< n, n> 0, i€ .S, on account of the martingale
convergence theorem we have already made use of in Section 2.2, we deduce that

lim P, (X(m) = jIX() = P, (X(m) = j|T), m=0,jeSs,

P,-almost surely. In particular

Jin; P, (X(m) = jIX(m) = P, (X(m) = jl4,), m=0,jeS,
on any P,-atom 4, of 7.

‘When compared with (6), the last equation shows that the elements of a basis
of the set of solutions (p,)n»0 of (5)are precisely given by p& = (P,,(X(n) = j \A,)) e’
their number being thus equal to the number of P,-atoms of . (The linear inde-
pendence of the (p$”)so0 is easily established on account of the representation of
the A4, given in Section 2.2.) In particular, there exists only one solution if and only
if 77 is P,-trivial.

5. References and comments

The finiteness of 7~ was first explicitly proved by Cohn [4]. A clearer treatment
including also the continuous parameter case was given by losifescu [10]. The proofs
given in these two papers depend on estimating certain random quantities related
to mixing coefficients. Subsequently, Sendenko [15] and Cohn [5] (unaware of Sen-
Eenko’s paper) proved the fact that the number of atoms does not exceed the number
of states of the chain. Cohn [6], to whom the present proof of Theorem 1 is essen-
tially due, showed that theorem is in fact implicit in Blackwell [1]. It is worth noting
that Blackwell was the first to make use of martingales in the study of nonhomoge-
neous Markov chains. The representation of atoms in Section 2.2 is his. Further,
Kingman [12] devised a geometric approach to nonhomogeneous (both discrete
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and continuous parameter) finite state Markov processes, Theorem 1 resulting as
a simple corollary of it. The idea of Kingman’s treatment is to regard the matrix

» P,,n >0, as alinear operator x — P,x acting on the space of column vectors

X = (x(i) )iES and to study the compact convex images of the unit cube [x: x =
X(Dies, 0 € x(() < 1, i€ S] under composition of such linear operators associ-
ated with P, Pyyy, ...y Poym, m 2> 0. (Somewhat similar approaches are to be found
in Caubet [3] and Sendenko [15].)

Theorem 2 is a special instance of a more general result by Blackwell and Freed-
man [2] for homogeneous denumerable state space recurrent Markov chains [re-
sult extended by Jamison and Orey [11] to homogeneous general state space Mar-
kov chains recurrent in Harris’ sense]. The finiteness of the state space allowed the
elementary given proof that is motivated by Senfenko’s treatment. Theorem 3 seems
to be new (at least as to its explicit statement). Of course, it does not extend to
homogeneous denumerable state Markov chains having an infinite set of transient
states.

It is worth while to note the recent work by Griffeath [9], who makes use of
coupling techniques [that originate with the so-called Doeblin [8] “two particle
method” for proving the basic ergodic theorem for homogeneous finite state: Mar-
kov chains] to derive results on the structure of discrete or continuous-parameter
Markov processes on a typically uncountable state space.

Since in the homogeneous case the tail structure is nothing but classification
of states, it is natural to try to use Theorem 1 to set up a theory of classification
of states for nonhomogeneous finite state Markov chains. (This assertion is to be
associated with the remark made at the end of Section 3.1.) In this respect one
should consult Cohn [7].
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The purpose of what follows is to extend the results of [7] to the d-dimensional case.
That paper [7] was devoted to the study of 1-dimensional semi-martingales. But,
in the introduction, we asserted that exténsion to d-dimensional semi-martingales
was obvious and straightforward. However, after reading Galt€uk [3] and Méti-
vier—Pistone [9], we became aware that stochastic integrals with respect to d-dimen-
sional martingales do not reduce to sums of 4 stochastic integrals with respect to
1-dimensional martingales. Consequently, extension of [7] is not as easy as it was
said.

This short paper is naturally divided into two parts: in the first one, which
follows ideas of Galtéuk, Métivier and Pistone, stochastic integrals and the Gir-
sanov theorem for d-dimensional martingales are described. We always give complete
proofs, but only for the facts which are strictly necessary for the second part, which
gives the extension of [7] to the d-dimensional case. This second part heavily relies
upon [7], and we only describe in which way proofs are to be modified.

1. Stochastic integrals with respect to
d-dimensional martingales -

1.1. Notations. We consider a measurable space (2, #) equipped with an
increasing and right-continuous family (#),»o of sub-o-algebras of &#. We denote
by 2 the predictable o-algebra of 2x [0, oo [ (for predictable processes and stopping
times, we refer to Dellacherie [1]).

Let P be a probability measure on (2, #). If #(P) is any class of processes,
we denote by #0.(P) the class of those processes X for which there exists a sequence
(T,) of stopping times increasing P-a.s. to oo, and such that X’ Tn belongs to €(P)
for each n (as usual, X7 is the process X “stopped at time T: X7 = Xpas). ¥V'H(P)
is the set of increasing, right-continuous processes 4 = (4,) such that 4, =0
P-as. and E(4y) < 0. Let ¥ (P) = ¥"+(P)— ¥ *(P) be the set of differences of
two processes of ¥+ (P).
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