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LOCAL CHARACTERISTICS AND ABSOLUTE CONTINUITY CONDITIONS
FOR ) ’
d-DIMENSIONAL SEMI-MARTINGALES

JEAN JACOD

Département de Mathématique et Informatique, Université de Rennes, Rennes, France

The purpose of what follows is to extend the results of [7] to the d-dimensional case.
That paper [7] was devoted to the study of 1-dimensional semi-martingales. But,
in the introduction, we asserted that exténsion to d-dimensional semi-martingales
was obvious and straightforward. However, after reading Galt€uk [3] and Méti-
vier—Pistone [9], we became aware that stochastic integrals with respect to d-dimen-
sional martingales do not reduce to sums of 4 stochastic integrals with respect to
1-dimensional martingales. Consequently, extension of [7] is not as easy as it was
said.

This short paper is naturally divided into two parts: in the first one, which
follows ideas of Galtéuk, Métivier and Pistone, stochastic integrals and the Gir-
sanov theorem for d-dimensional martingales are described. We always give complete
proofs, but only for the facts which are strictly necessary for the second part, which
gives the extension of [7] to the d-dimensional case. This second part heavily relies
upon [7], and we only describe in which way proofs are to be modified.

1. Stochastic integrals with respect to
d-dimensional martingales -

1.1. Notations. We consider a measurable space (2, #) equipped with an
increasing and right-continuous family (#),»o of sub-o-algebras of &#. We denote
by 2 the predictable o-algebra of 2x [0, oo [ (for predictable processes and stopping
times, we refer to Dellacherie [1]).

Let P be a probability measure on (2, #). If #(P) is any class of processes,
we denote by #0.(P) the class of those processes X for which there exists a sequence
(T,) of stopping times increasing P-a.s. to oo, and such that X’ Tn belongs to €(P)
for each n (as usual, X7 is the process X “stopped at time T: X7 = Xpas). ¥V'H(P)
is the set of increasing, right-continuous processes 4 = (4,) such that 4, =0
P-as. and E(4y) < 0. Let ¥ (P) = ¥"+(P)— ¥ *(P) be the set of differences of
two processes of ¥+ (P).
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When we speak of martingales, it is always with respect to (#,); we consider
only right-continuous and left-hand limited martingales, and we identify two mar-
tingales whose paths are P-a.s. the same. .#(P) (resp. #>*(P)) is the set of all uni-
formly integrable (resp. square-integrable) martingales. Let #°(P) = {M e #(P),
with continuous paths}. We have M{o(P) = M7e(P). Each M e M )oo(P) has
a unique decomposition M = M°+ M® where M° € MEo(P), M§ = 0, and M* sa-
tisfies M*N € M 1oo(P) for each N e Mf.(P); M° is called the continuous part of M.
The space #>(P) is a Hilbert space under the norm |[M||y: = ]/supE(M,z).

o

For 1-dimensional stochastic integrals, we refer to Doléans-Dade and Meyer
[2], or to Meyer [10]. We will be interested only in stochastic integrals with respect
to elements of 2(P) or ME.(P): if M,N e #L(P), we know the predictable
element of ¥"1,.(P), which is denoted by (M, N), and characterized by the fact that
MN—{M, N> € M o:(P). Let
IL*(M, P) = {u predictable process, u*- (M, M> e ¥"*(P)}.(")

If ue L{,.(M, P), the stochastic integral #- M is the unique element of .#2.(P)
such that (u+ M,N)> = u- (M, N> for each N e #E.(P). If ue L*(M, P), then
u- M e M*(P), even if M ¢ #>(P).

Let &/ = AL(P). Let

2o ) ={Y u N neN, Nl e, u e LW, P)}
isn
and let £(4") be the closure of the space #°(A4") in M*(P). L(AN)is the stable
subspace generated by 4. Remark that we do not impose A4~ < #2(P), and that

L) = {D W N neN, Nie s, e Li(V', P)}.
isn
1.2. Stochastic integrals. Now, let M = (MY, ..., M%) be a family of d ele-
ments of #%.(P). We want to construct stochastic integrals with respect to M

in such a way that the set of all those stochastic integrals is exactly % (M). The

difficulty arises from the fact that, except for d = 1, inclusion ¥°(M) = L (M)
may be strict.

We define a predictable element of ¥~ (P) by
MMy = DM M,
1<Tad
The measures d(M‘, M’y are absolutely continuous with respect to the measure
d{M, M, so there exist predictable processes m such that

M (M My = mY - (ML, M.

s .
() If 4 is a process whose paths have bounded variation and if z is any process, we define
t

the process-z- A by z- A(w) = (S’ z;(w)dAs(w) if this expression makes sense, and z* A;(w) = oo
if it does not.
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We may, and will, choose suitable versions of m, such that for each (w, ¢) the ma-
trix' (mY(w, 1)) is symmetric, nonnegative. :

Let L2°(M, P) denote the set of R-valued processes v = (v*, ..., ") such

that o' e L2(M', P), for each i. If ve L*°(M,P), we put @)= > oot M
147=d

which defines an applications: L*°(M, P)-*~ Z°(M\.

If o = (@, ..., 9% is any R%valued process, we define an increasing process
v* - (M, M) by
@) o MMy =( Y omiivl)- (M, M.
1<7,7<d

L?(M, P) denotes the set of all predictable R%valued processes # such that 2%
M, M) e ¥*(P), and formula {|o||y = E@* (M, M)/ defines a seminorm on
that space. If v € L*°(M, P), trivial computations using (1) show that {oe(), a (@)
= 2% (M, M>. Therefore v e L?>(M, P) and [|o]ly = [|&(®)|ls2- In other words,
I?°(M, P) < L*(M, P) and « is a norm-preserving application. The next lemma
is crucial for constructing stochastic integrals with respect to M (cf. [2], [9]).

Lemma 1.1. L?° (M, P) is a dense subspace of L*(M., P) for the seminorm || - {|u .

Proof. As (M, M e ¥ };.(P) there exists a sequence (7)) of stopping times
increasing P-a.s. to oo, such that E({M, M)r,) < co for each n. Let 2 € L*(M, P).
We put

A() = {(0,1): t< Ty(w), [P0, )< n,1<ig d}.

We have 4(n) € 2 and if o, is the process with coordinates o} = I40my?', We clearly
have w, e L*°(M, P). Moreover, |lo—2,||3% = El(Ligye?) - <M, M}), which
tends to 0 as nfoo by the fact that the complement of Q A(m) in 2%[0, ol is

P-evanescent, and by the Lebesgue convergence theorem. :

Therefore « admits a unique extension as an application from L>(M,P) in
M2(P). If v e L*(H#, P) we denote by 2- M the image of v by that application:
v+ M is the stochastic integral of v with respect to M. Moreover, this extension is
again norm-preserving, and it is evident that {o-M,v M) =v*-(M,M); by
“polarisation” it follows that for v € L%.(M, P) and w € LE,(M, P) we have
16) o M,wMy=( Y. o'miw) - (M, M.

1<i, j<d

THEOREM 1.2. £ (M) is exactly the set of all v+ M, with v € L2(M, P) (and, of
course, L10e(M) = {0+ M, v e LE(M, P)}).

Proof. It is clear that - M e £ (M) whenever v € L*(M, P). By definition
£ (M) is the closure of £°(M), which is the image of L*°(M, P) for a. There-
fore we only have to prove that if o, - M tends to N in .# 2(P), with v, € L>:° (M, P),
then N = v - M for some @ & L*(M, P). But if we put o} =3 vim'v], the sequence
(0?) is a Cauchy sequence in the space L' (@x[0, o[, ), where y is the positive
measure u(dw, dt) = P(dw)x{M, M)(w, dt). Therefore 22 tends to a limit w in
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that space and we may find a subsequence (2,) which tends to w u-almost every-
where. If A4 is the set of convergence of that subsequence, we put w' = 1,w. The
existence of a predictable R%-valued process @ such that w’ = 3" o'mbe? easily follows
from the definition of »? and the predictability of 4. Finally, the convergence of
22 towards w' in L'(2x [0, o[, ) implies that » € L*(M, P) and that ||v,- M~
~0 M|,z = ||#.—2||y — 0. Therefore N = v+ M.

1.3. The Girsanov theorem for continuous d-dimensional martingales. In this
section, M = (MY, ..., M*) is a family of d elements of #{c(P), and m" is again
defined by (1). Suppose P’ is another probability measure on (2, &) such that
P! < P. We want to study which properties M has with respect to P'. We may take
advantage of the following lemma, which is a version of the Girsanov theorem and
is well known (see, for example, Van Schuppen and Wong [11]).
dpP’
P

process N' = N—N,— —Zl— (N, Z°y belongs to M5,.(P') and (N, N) is a version of

LemMA 1.3. Let Z be the martingale Z, = E( W’,)‘ If N € M5yo(P), the

the bracket associated with N' for P’.

Of course this lemma applies to each coordinate M separately. But we may
also obtain a “global” version as follows:

THEOREM 1.4. There exists a predictable R'-valued process v such that M'" =
Mi_Mé—(lz;s lfufm-“) AM,M> e ME(P), and (M, M7y is a version of the

€ j<ga
bracket associated with M"* and M for P'.

Proof. Let Z as in Lemma 1.3. Owing to Theorem 1.2, we see that Z° may be
written as Z° = u+ M+Z°, where u € L,.(M, P) and Z° satisfies (Z°, N) = O for
each N € Z1.(M). Moreover, Z is a nonnegative martingale, thus Z, = Zf
=u-M, = 0if ¢ > inf (s: Z& = 0): therefore if » = u(1/Z_.) on the set {Z_ > 0}
and v = 0 elsewhere, we have Z° = (Z_v): M+Z° and Z_v e L}, .(M, P). Now,
by using the fact that M* = w,» M with w| = 0 or = 1if i # j or i = j, respect-
ively, and by using (3), Lemma 1.3 yields M"' € M{,,(P). Finally, the statement con-
cerning (M*, M’> again follows from Lemma 1.3, directly if / = j and by polaris-
ationif i j. =

As for the 1-dimensional case, this theorem presents a partial converse.
Namely, let v € £{,.(M, P) and N = v- M. We define the exponential of N by

@ : Z, = exp(Ny—$<N, N )0,
which is a nonnegative local martingale, Then
THEOREM 1.5. If E(Z,,) = 1, then

M' = M- M- (XZdvfm*f) (M, M>
J<

belongs to Mf,.(P"), where P’ is the probability measure defined by P' = Z,* P.
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Proof. It is sufficient to notice that Z, = E (%— |F ,) and that (4) implies Z =
14+Z_-N, thus Z° = (Z_2)+ M, and compare with the proof of 1.5. m

2. Application to d-dimensional semi-martingales

2.1. Local characteristics. Now we proceed to the extension of [7], without
restricting ourselves to using the results of that paper.

(2, #) and the family (#,) are as in Section 1. We put E = R*\{0}, with
its Borel o-algebra &, and 0=0x [0, o [XE, P = PR8E. If y(w; dt, dx) is a “ran-
dom measure” on [0, o[ X E, and if W is a function on D, we define the process
Win by

W) =

[0,8]xE

W(o, s, x)n(w; ds, dx)
if this expression makes sense, and
Win(w) = o

if it does not. A Eandom measure 7 is said to be predictable if Wiy is a predictable
process for any #-measurable function W.

X = (X%, ...,X% is an adapted Ri-valued process whose paths are right-con-
tinuous and left-hand limited. We consider the random measure x on [0, c0[XE
which is associated with the jumps of X by ,u(m; [0,f]xA4) = Ex 1,(4X;), where

A € & (AX, is the size of the jump of X at time s). We associate with X another Re-
valued process ¥ by :
Y = Xi=Xj= ) AX{Lxyon-
<t

Let P be a probability measure on (2, ) for which X is a (d-dimensional)
semi-martingale, i.e. for each i, X* = A'+N* where N* € #1,o(P) and Al is a pro-
cess whose paths have bounded variation over each finite interval. .

DErNITION 2.1. The set of P-local characteristics of X is the triplet € = (CNN )]
defined by

» is the unique predictable random measure such that the process (u([0, 1]
X A)—3([0, 11X A) )10 belongs to Myac(P) for each A€ & lying at a positive dis-
tance of 0.

o is the unique predictable R*-valued process such that of € ¥ 10e(P) and Y —
—a' € M1pc(P) for each i.

B = (BY = {M', M*)); <1, j<a, Where M is the continuous part of the local
martingale ¥* —a'.

Existence and uniqueness for » were proved in [6], while existence and unique-
ness for each of were proved in [7] or [10]. The concept of local characteristics has
been introduced by Grigelionis [4], [5]. » is also called the “Lévy system” of X,

The usefulness of this concept relies upon its relationship with stochastic differ-
ential equations: quite frequently, solutions ‘of those equations are semi-martin-
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gales whose local characteristics are related in a simple way to the “coefficients”
of the equation. Several examples (including processes with jumps) are displayed
in [7] and [8], as well as in several papers by Grigelionis. But here, in order to illus-
trate the notion, we content ourselves with the example of processes with indepen-
dent increments: namely, let us suppose that for P, X is a process with independent
increments (say, homogeneous), with Lévy measure F, diffusion coefficients " and
drift coefficients a'. Then X is a P-semi-martingale whose local characteristics are
w(w; dt,dx) = dt x F(dx), o' (w,t)=a", pY(w,t) = bt
(Of course, we must choose a suitable version for the drift coefficients.)

2.2. Changes of measures. We will state the main results of [7), namely the-
orems (3.3), (4.1), (4.2), (4.3), and (4.5), for the d-dimensional case, leaving the
extension of other parts of [7] to the reader (this time, this is really obvious and
straightforward!). Theorem (4.4) of [7] has already been extended to a much more
general case in [8].

At first let P be a probability measure for which X is a semi-martingale whose
local characteristics are 4 = (v, «, ). We put Ul(w,t,x)= x(ilxq‘ 1y (where

x = (x%..., x’i) € E). Let P’ be another probability measure such that P’ < P.
THEOREM 2.2. (a) X is a P’-semi-martingale.
(b) There exist a P-measurable nonnegative function Y on Q and a predictable
R%valued process v such that the formulae
v (w; dt, dx) = Y(w, t, x)v(w; dt, dx),
® i i N i
=l D omi) gt UN(Y— D,

1<j<d

where B = 3. B and m" are predictable processes with 4 = m' - g,
14724

ﬁn’j = lBij

define a triplet ¢’ = (v, o,  B') which is the set of P'-local characteristics of X.

Proof. We can prove (a) for each component X', and this is done in [7]. The
formula giving»' is proved in [6]. Let M’ be the continuous part of the local martin-
gale Y'—a' and N' = Y'— o M'. Theorem 1.4 implies that there exists a predict-
able R’-valued process » such that

M=M= (D o) peine(P)
1sjsd

and that §¥/ is a version of the bracket associated with M and M* for P’. Finaily,
trivial modifications in the proofs of [7] show that N = N — [U(Y—1)]k» € 100 (P")
and that the continuous part N "t for P’ is 0, thus yielding the result. m

From now on, we suppose that P and P’ are two probability measures for which
X is a semi-martingale. We denote by % (resp. %) the set of P- (resp. P’-) local
characteristics of X. As we are interested in conditions for having P’ < P, it is only
natural to assume that %' is obtained from € by formulae (5), for some P-measur-
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able function Y and some predictable process 2. We will also assume that X is
quasi-left continuous for P (this is equivalent to assuming »(w; {t} XE) = 0 ident-
ically and, in view of (5), X is also quasi-left continuous for P’).

‘We have also to consider an “initial condition”, which is described by a sub-
o-algebra F§ of #, (usually F§ = o(x,)) and the restriction Q and Q' of P and
P’ to 3. .

If T is any stopping time, we say that “T-uniqueness” holds for (%, Q) if, P
being another probability measure whose restriction to #§ is Q and such that
the stopped process X' is a P-semi-martingale with local characteristics ¥7 =
(v(w; dt, dx) 1y <, &7, B7), the restrictions of P and P to Fy_ coincide. In

[7] conditions for having T-uniqueness for each predictable stopping time are exa-
mined, and everything goes through the d-dimensional case. Similarly, we define
T-uniqueness for (%', Q'). Let us define:
A= ( Z vim‘jvj) BT =D gsopr+ (Y —1)* Lip<ayo,
1<i,j<d

S, = inf(t: 4, > n), S =inf(t: 4 = o) = limS,,
’ (m

G= 4y <), G= {ly—opves = 0}.
THEOREM 2.3. (a) If P < P, we have Q' < Q and P'(G)=1. (b) If P < P',
we have Q < Q' and P(GNG) = 1.
THEOREM 2.4. Assume that F = }{ F.. Assume that jfor each n, S,-uniqueness
1

holds for P (resp. P'). Then

(a) IfP'(Gn(A}) =1 (resp. if P'(G) = 1) and Q' < Q, we have P’ < P.

(b) If P(GNG) = P’(@) =1 (resp.if P(GnGS =1) and Q <Q', we have
P <P,

These theorems are exact reproductions of the statements of [7]. The only
difficulty with respect to the I-dimensional case was to find the correct first term
to be put in the definition of 4. We will not reproduce the proofs here: they would
be much too long. Let us just give some hints. Let M’ be the continuous part of
Yi— ot e Mioo(P),and M = (M?, ..., M%). PutN(n) = (1jp,502) - M+ (lp,s0(¥— )=
*(u—v)(owing to the definition of S, the first stochastic integral makes sense; for the
second one, we refer to [7]), and

M- NN [ | (14 AN(n) )e=a¥if 1< S,
©  Z=i

liminfZys,

)

The proofs in [7] were based upon the properties of N(n) and Z. The continuous
part N(n)° and the purely discontinuous part N(n)? were constantly separated and
treated independently. For the discontinuous part nothing has changed. For the
continuous part (which is the easiest one) we only have to use Theorems 1.4 and
1.5: this explains the first term in 4, which on [0, S,] reduces to (NP, N,
The details are left to the reader.

ift=S.
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Finally, let us reproduce Theorem 4.5 of [7], which shows why the process Z
defined by (6) intervenes.

THEOREM 2.5. (a) Let q be a nonnegative F3-measurable random variable such
that E(g) = 1. Assume that E(gZ,) = 1 and that qZs = 0 P-a.s. on the set {J {5,
@) -

= 8 < w}. Then X admits €' for P-local characteristics if P = 9z,) P.

(b) Assume P’ < P and let q = —il{%— If Sy-uniqueness holds for (4', Q') for

each n, we have E(gZ,,) = 1, ¢Zs = 0 on the set | {8, = S < o0} and ¢Z is a ver-
: (@)
sion of the martingale E (%1;,— |F ,).

(For statement (b) above, we recall that P’ is supposed to be given a priori,
with P’-local characteristics %’ for X; statement (b) remains true of we replace

S-uniqueness by the “property of representation for martingales” with respect to
X, for P; cf. [7], [8].)
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1

‘We shall deal with the theory of infinitely divisible measures. One of the most im-~
portant and most interesting problems in this theory is to describe some natural
subclasses of the class of all infinitely divisible distributions. By a natural class we
mean here a class of measures which coincides with the set of all possible limit
laws for some more or less standard array of random variables. Some natural sub-
classes of infinitely divisible. measures are well known and have been examined
in detail, for example: stable measures, self-decomposable measures, all infinitely
divisible measures.

The class of stable measures will play some role in the sequel, so we recall
now that it can be defined as the class of all limit laws for normed sums of random
variables. Namely, for a sequence of independent, identically distributed random

n
variables &, , &, ... we consider normed sums of the form », = 4, kZl &+ B,, where

A, > 0 and B, are arbitrary real numbers. The class of stable measures consists of
all limit laws for the sums %,./0f course, we can consider random variables & tak-
ing their values in the linear vector space ¥. Then B, are vectors from Y and we
obtain the definition of stable measures in Y. In this case the sums may be normed
by linear operators, that is, the numbers 4, may be replaced by linear operators
acting in Y. In particular, if we consider R¥-valued random variables and 4, are
non-singular linear operators acting in the N-dimensional Euclidean space, then we
obtain the class of operator-stable measures. That interesting class has been intro-
duced and examined by M. Sharpe [12]. More precisely, M. Sharpe described the
class of full operator-stable measures. Recall that a measure in RY is said to be full
if its support is not contained in any (N - 1)-dimensional hyperplane.

We shall now quote the theorem of Sharpe [12].

THEOREM 1. A full measure w.in RY is operator-stable if and only if it is infini-
tely divisible and there is a non-singular linear operator B in RY such that U=
12 uxdyep, t > 0, for some b(t) € RY. We put here by definition t® = exp{lgt- B}.

[141]
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