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Finally, let us reproduce Theorem 4.5 of [7], which shows why the process Z
defined by (6) intervenes.

THEOREM 2.5. (a) Let q be a nonnegative F3-measurable random variable such
that E(g) = 1. Assume that E(gZ,) = 1 and that qZs = 0 P-a.s. on the set {J {5,
@) -

= 8 < w}. Then X admits €' for P-local characteristics if P = 9z,) P.

(b) Assume P’ < P and let q = —il{%— If Sy-uniqueness holds for (4', Q') for

each n, we have E(gZ,,) = 1, ¢Zs = 0 on the set | {8, = S < o0} and ¢Z is a ver-
: (@)
sion of the martingale E (%1;,— |F ,).

(For statement (b) above, we recall that P’ is supposed to be given a priori,
with P’-local characteristics %’ for X; statement (b) remains true of we replace

S-uniqueness by the “property of representation for martingales” with respect to
X, for P; cf. [7], [8].)
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1

‘We shall deal with the theory of infinitely divisible measures. One of the most im-~
portant and most interesting problems in this theory is to describe some natural
subclasses of the class of all infinitely divisible distributions. By a natural class we
mean here a class of measures which coincides with the set of all possible limit
laws for some more or less standard array of random variables. Some natural sub-
classes of infinitely divisible. measures are well known and have been examined
in detail, for example: stable measures, self-decomposable measures, all infinitely
divisible measures.

The class of stable measures will play some role in the sequel, so we recall
now that it can be defined as the class of all limit laws for normed sums of random
variables. Namely, for a sequence of independent, identically distributed random

n
variables &, , &, ... we consider normed sums of the form », = 4, kZl &+ B,, where

A, > 0 and B, are arbitrary real numbers. The class of stable measures consists of
all limit laws for the sums %,./0f course, we can consider random variables & tak-
ing their values in the linear vector space ¥. Then B, are vectors from Y and we
obtain the definition of stable measures in Y. In this case the sums may be normed
by linear operators, that is, the numbers 4, may be replaced by linear operators
acting in Y. In particular, if we consider R¥-valued random variables and 4, are
non-singular linear operators acting in the N-dimensional Euclidean space, then we
obtain the class of operator-stable measures. That interesting class has been intro-
duced and examined by M. Sharpe [12]. More precisely, M. Sharpe described the
class of full operator-stable measures. Recall that a measure in RY is said to be full
if its support is not contained in any (N - 1)-dimensional hyperplane.

We shall now quote the theorem of Sharpe [12].

THEOREM 1. A full measure w.in RY is operator-stable if and only if it is infini-
tely divisible and there is a non-singular linear operator B in RY such that U=
12 uxdyep, t > 0, for some b(t) € RY. We put here by definition t® = exp{lgt- B}.

[141]
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The operators B which can occur in the above representation can be charac-
terized by their spectral properties. Namely, (i) the spectrum of B is in the half-
plane Rez > 1/2, and (i) the eigenvalues lying on the line Rez = 1/2 are simple,

Recently V. M. Kruglov [9], [10] introduced an interesting subclass of infi-
nitely divisible measures. This class is a natural extension of the class of stable mea-
sures. For this reason, it will be called in the sequel a class of semi-stable measures

(and denoted by S). A probability measure u is called semi-stable if it is the limit
Fon

law for a sequence of normed sums A4, kgl £+ B, where &; are independent ident-
ically distributed random variables, 4, > 0, B, € R and {k;} is an increasing se-
quence of positive integers such that k. k7' — r < co.

We now quote theorem of Kruglov for the case of a separable real Hilbert
space [10].

THEOREM 2. A measure u in a separable real Hilbert space H is semi-stable
if and only if its Fourier transform is either of the form

4(x) = exp{i(a, x)—1/2(Sx, x)}  (Gaussian case)

or of the form
N 3 wx i(u, x) ,
pa(x) = exp {1((1, x)+§l(e" —1~ THllE )M(d“)},

where a € H, and M is a semi-finite measure such that the following conditions are
satisfied;

©) ,51 min(1, |[u/|*) M(dw) < o;

(B) there exist o €(0,2) and 0 < a % 1 such that T,M = a*M.

In comparison with the characterization of stable measures given in [5] we
can see that there is only one difference in condition (B). Namely, if instead of (8)
we take the condition

(B") there exists a number o € (0, 2) such that T,M = a*M for all a > 0,
then we get the description of the class of stable measures in H.

2

Let us denote by G the group of all non-singular linear operators in RY. Our next
purpose is to describe the class of all full measures in R” which are the limit laws
for sums of the form

(*) An(fj,"" . +5k")+cns

where {£,} is a sequence of independent, identically distributed R¥-valued random
variables, 4, € G, ¢, € R¥ and {k,} is an increasing sequence of positive integers
such that k., k7' - r < oo.
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Limit laws for the sums (x) will be called operator semi-stable.
THEOREM 3. A full probability measure in RY is operator semi-stable if and

only if it is infinitely divisible and there exist a number 0 < ¢ < 1, a vector b e R¥
and an operator B € G such that

(x%) 4° = Buxd(b)

holds. The spectrum of B is contained in the disc {|z|> < c}. Eigenvalues of B satisfy-
ing |A|* = c are simple, i.e. the elementary divisors of B associated with these eigen-
values are one-dimensional.

Furthermore, the measure u can be decomposed into a product p = p*u, of
two measures p; and y,, concentrated on B-invariant subspaces X, and X,, respect-
ively, and such that RY = X, ®X,, u, is a full semi-stable measure on X, of the Poisson-
type (having no Gaussian component) and u, is a full Gaussian measure on X,. The
spectrum of B|X, is then contained in the disc {|z|> < ¢} and for the eigenvalues of
B|X, the equality |z|*> = ¢ holds.

The proof of our theorem is rather long and we will give it only in outline.
Some details can be found in [4]. We start with some lemmas. In the proofs of the
following two lemmas the technique developed by K. Urbanik [15] is used. We
omit their proofs. '

LemMA 1, Let u be a full measure for which the formula
) . 4 = lim 4,v*%3(b,)
n—+ 00
holds, where ve M, A, € G, b, € R¥ and k; 'k, =y < 0. Then 4, — 0.

LemMa 2. If w is a full measure for which formula (1) holds, then the sequence
of operators

@ {7481}

is precompact in G. Moreover, if C is a limit point of sequence (2), then the formula
(€) A() = [B(Cy)ye'®

holds.

In the sequel it will be convenient to adopt the following definition, A Borel
measure M in RN is called a Lévy-Khintchine spectral measure (or briefly LK-
measure) if M is a semi-finite measure concentrated on R¥\{0} and such that

(@ § min(1, fjull?) M(dw) < oo

Denote by I7, the orbit /T, = {B*x, k runs over all integers}. The following
lemma is crucial for the proof of our theorem.

LeMMa 3. Let M be a non-trivial LK-measure concentrated on the orbit II.,
where B e G, and let the formula BM = cM hold for a certain 0 < ¢ < 1. If Viis

the complex Euclidean space spanned over IT., then the spectrum of the operator BV,
is contained in the open disc {|z|* < ¢}.
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Sketch of the proof of the lemma. In our case condition (a) is equivalent to

S IB2e < oo,

n=1

®)

where ||+ || is an arbitrary norm in V. To establish a suitable norm in (b) we take
the Jordan basis in ¥, with respect to B, say {z;,zs, ..., Z,}. Let us choose the
norm by putting
n
LEDNA
s=1

Then from the prbperties of the Jordan basis it can easily be deduced that
each eigenvalue 4 of B|V, satisfies

(1B"x]| = dlAf",

n

for y= Z O Zy.

§m=

d > 0 for all n.

Comparing this with (b), we obtain [1]> < ¢.

From Lemma 3, by standard reasoning, we can get the following

LemMmA 4. If M is an LK-measure and BM = cM for a certain 0 <c <1,
Be G, then M is concentrated on a B-invariant subspace X = RN such that the spec-
trum B|X is contained in {|z|? < c}.

LeMMA 5. If a measure w is full and p is a weak limit of a sequence of the form
= limA4,v*%8(b,),

where A, € G, b, € R¥,v is a probability measure in R, k, - 0, k4., et
then u is operator-stable in the sense of Sharpe.
Sketch of the proof of the lemma. By Lemma 1, u is infiniitely divisible. Let

o € (0, 1). Fix a sequence I(n) of integers such that ki, k;* — o. After some com-
putations we get ‘

M = limC, P,xé(a,),

where P, = A¢nyv*'® 5 8(by¢ry) and C, € G.

Then P, — p and C, P,xd(a,) — p* (full measure!). By the Compactness Lemma
of Sharpe ([12], p. 55), the sequence {C,} is precompact in G, and {a,} is pre-
compact in RY. Denoting by Cyj and aythe limit points of these sequences, we
get u* = Ciupuxd(c,), ¢, € RY. Putting o =n~!, we obtain u = C,u"+xd(cy),
which means the operator-stability of x4 in the sense of Sharpe.

Sketch of the proof of Theorem 3. Syfficiency. Let u be an infinitely divisible
measure satisfying

O] 4 = Buxd(b)

fm‘: acertain0 <c¢ <1,BeG and be RY. From (x)it easily follows that there
exists a sequence of vectors {b,} of RN such that ‘
= Bu v3(by),

where r=1/c>1,
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holds. Putting k, = Entier(+"), we obtain
n= limB",uk"*zi(b"),
n—+

where, obviously, k, / oo and ky'kyyy —r > 1, which proves the semistability
of u. ‘

Necessity. Infinite divisibility of u follows immediately from Lemma 1. Con-
dition (%) in the case where r > 1 follows from Lemma 2. If r = 1, then p is stable
by Lemma 5 and Sharpe’s formula holds.

uo= tAuxd(b), t>0.
Taking an arbitrary 0 < ¢ < I and putting B = ¢t b, = b, we get
* ¢ = Buxd(b)
also in the case where r = 1.
Let us now write the Lévy—Khintchine representation of ,

© A0) = exp{iGro, -3y N+ § Keo M@0,
LN

where x, € RY, D is a symmetric non-negative linear operator in RY Mis a Lévy-
Khintchine spectral measure and the kernel K is defined by

i(x, )

T {jx[>”
Writing () in terms of characteristic functions, we get, by the uniqueness of re-
presentation (c), the following conditions:
@ BM = cM,
® BDB* = cD.
Let RY = X@®Y be a decomposition of RY into a direct sum of B-invariant sub-
spaces such that

K(x,y) = €N -1-

spectrumB|X < {|z|* < ¢},

spectrum B|Y < {|z|*> > ¢}. ,
By virtue of Lemma 4 we have M(Y) = 0. In particular, if X = R, then the mea-
sure u is a full measure of the Poisson-type (without a Gaussian component). To
simplify the notation we assume for a moment that Y = RM. In this case p reduces
to a Gaussian measure with the characteristic function

A
() = exp{i(xo, )—3D» N},

where the operator D satisfies (5). This immediately implies that the spectrum of
BI|Y lies in fact on the circle {|z|* = ¢}. By X (or A) we denote a rfatural llpear
extension of X (or 4 acting in X) to the complex case. The sign “~” will be on.mtted
if it is clear which case we deal with. When talking about spectral pro?emes of
operators, we always mean the properties of their natural complex extensions.

One can now show that all the eigenvalues ﬁl? are simple.

10 Banach Center t. V
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Summing up, there exists a decomposition of ‘RY into a direct sum RY = X®Y
such that p can be represented as a product g = py¥fiz, where 4, is a semi-stable
full measure on X without a Gaussian component and y, is a full Gaussian mea-
sure on Y. The spectrum of B is contained in the disc {|z|* < ¢}. Moreover,
spectrum B|X < {|z|> < ¢} and spectrum B|Y = {|z|*> = ¢}. This ends the proof
of necessity.

3

It is well known that the class L of Lévy’s (self-decomposable) measures contains
the class of all stable measures. It is not difficult to notice that there exist semi-
stable measures which are not self-decomposable and conversely. Our next aim
is to describe the intersection LS of the classes L (of self-decomposable measures)
and S (of semi-stable measures). We will confine ourselves to the case of the real
line. The characterization of the class LS is given by the following

THEOREM 4. A function @ is the characteristic function of a distribution from LS
if and only if either '
o(t) = exp(ity—0°t?),
where y e R, 6 > 0 (i.e. p is-the characteristic function of Gaussian measure), or
there exist o € (0, 2) and a € (0, 1) such that

[ S (eila-"z_ 1 _.az_l;cm_.;i_z_) -wls—z(iz)— dz] v(ds)} s

[es |e[TN{0} “R\{0}
where ¢ = Ina < 0, v is a finite Borel measure on [c, |c[[\{0} and vy, is given by
the formula

@
(1) = exp {iyt+ 2‘ ak*

k=—w

¥s(2) = Legnst,ern (2) +a* - Lignstet,a-n(z), z€R.

This description of LS is rather complicated but it does not seem possible to
simplify it.

The proof of the Theorem is long but the. general idea is simple and we will
present it here. The proof is based on the extreme-point method (Krein-Milman-
Choquet Theorem [8], [2]), adapted to the theory of infinitely divisible distri-
butions by Kendall [7], Johansen [6] and Urbanik [13], [14]. Some details can be
found in [3].

Let R denote the set of all real numbers, R, = R\{0}, R* = (0, ), R~ =
(— ©,0and R = [— o0, o0].

Denote by P the space of all Borel probability measures on R with the top-
ology of weak convergence of distributions. P is a metrizable compact space.

We consider for u € P the following functions:

g®=§  a+»y2uw),
(6) from=em XeR.
Q§x=(s A+32y2u(dy),
eX, 0}
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For a characteristic function ¢ of infinitely divisible distribution let us write the
Lévy-Khinchine formula

) (t) = exp {ity +ISe [e" —1—itx(1 +x2)~1](1 +x2)x*1,u(dx)}, teR,

where ¥ € R and p is a finite Borel measure on R..

It is known ([11]) that the class L coincides with the class of all infinitely divi-
sible distributions for which both functions in (6) are convex.

Here p denotes the Lévy-Khinchine spectral measure (concentrated on R)
which corresponds to the infinitely divisible distribution in representation (7).

On the other hand, the class S consists of all distributions for which in (7) either
w is concentrated on {0} (the Gaussian case) or u is concentrated on Ry, and there
exist a € (0, 2) and a e (0, 1) such that

® SE +32)y2u(d) = @ § (1+32)y~2u(dy)
a-! E
for every E € Bor(R,) (comp. [10]).

Let LS, be the class of all self-decomposable distributions for which the
spectral measure in representation (7) satisfies (8). Let N, denote the'set of all
finite Borel measures x on R such that the functions in (6) are convex and (8) holds.
By N2y (N, Ni.) we shall mean the set of those measures u from N, which
are concentrated on R, (R*, R—, resp.). .

Finally, K,,. denotes the intersection of the sets N, and P. K7, Ko, Kis
are defined in an analogous manner. The sets K with suitable indices are endowed
with the topologies induced by P.

Notice that y is the Lévy—Khinchine spectral measure in representation (7)
of some distribution from LS, , if and only if x belongs to N§.,.

Obviously, the set X, ., is convex. One can prove that it is compact.
~ To use the Choquet Theorem we have to find the set e(K,,,) of extreme points
of K, 4. .

Let us put u—(E) = p(—E), E € Bor(Ry).

Notice that the one-point measures g, 6_.,, 8, belong to K, , and, moreover,
the measure y belongs to N, . if and only if both of its restrictions to R* and R~ do.

Hence we can see that the extreme points of K, . are measures concentrated
on one of the following sets: {— o0}, {0}, {c0}, R" and R~

The one-point measures o, &; - are evidently extreme points of Kjq.
If u is an extremal measure concentrated on R*, then p~ is such a measure on R~
and conversely. Consequently, it suffices to find those extreme points of K, , which
are probability measures concentrated on R~. Notice that all of these extreme points
are extreme points of K, .

Consider an arbitrary u from K,. The suitable fanction

0.0= | 10+yy2u@),
(—00, —e~%)

xeR

10%
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is non-negative, monotone non-decreasing, convex and Q,(— ) = 0. Moreover,
Q,, satisfies the following condition of quasi-periodicity:

Qy(x+ c) = auQ,u(x)’ X € Rs
where ¢ = Ina < 0.
Thus the function Q may be written in the form

x

0.0 = | q.di, xeR,

-0
where g, is non-negative, monotone non-decreasing and such that

® gu(x+c) = a'qu(x)
for almost all x & R, and
0
{ qu(~InjxDIxl(1 +x%)1dx = 1.
-
One can assume that g, is continuous from the left. Then g, is uniquely determined
by u and condition (9) holds for all x € R. ‘
Conversely, if ¢ is non-negative, monotone non-decreasing, continuous from
the left and satisfies the conditions

(10) qlx+c¢) = a“q(x), xe€R, c=Ina,
, . .
an § a(-Inlxpid(+x9)tdx = 1,
then the formula ‘
(12) w(B) = {g(~In[xDIxI(1+x)~dx, EeBor(R~)
E

defines a measure 4 € K, such that g, = 4.

In other words, the above formulas establish a one-to-one correspondence
between the set K, and the class Q of all those non-negative, monotone non-de-
creasing functions continuous from the left which satisfy (10) and (11). The corre-
spondence in question preserves convex combinations and hence extreme points of
K7, are transformed onto extreme functions (non-decomposable in the class Q).
The problem has been reduced to-finding all non-decomposable functions in the
class Q.

One can prove that the class of functions non-decomposable in Q coincides
with the one-parameter family of functions

Bsy, c<u<s
<0,

9:(¥) ={
Y, S<u

where s € [c, 0) and the constants f; and y, are uniquely determined by the re-
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lations
ﬂs = a“Vs ’

pe [i a“"lzl(“”‘+22)“]d2+7s(5 [kij a2l (@423 dz = 1.

(—a=t,=e=] k==o et 1]

The limit case s = ¢ means that
o0

ve={ § Y ea@@ +n] @}
(—a~t,~1] k=-w .o o
and B, simply disappears. e
The one-to-one mapping m from S = [¢, |¢[JU{+ 0} onto e(K,,) given by m(s)
= u, is a Borel automorphism. By the Choquet Theorem for an arbitrary u € K«
there exists a probability measure ¥ on S such that s - .
S w@d = {[§eman] 5@
® 5r .
for every function f continuous on R. Notice that for u € K3, the-suitable measure
# is concentrated on [c, [¢[]\{0}. Thus
{oou@y = | {§ru@)s@s
& T NOR S .
holds for every continuous and bounded function f on R,. Putting
£ix) = [ = 1—itx(1+x5) (14 %) x>
and using (12) we obtain after calculations
o0
Sf:(X)/ts(dx) =7 Z a* S
Ro k= —0o0 Ro
Now, we observe that y,, as a function of s € [c, [elI\{0}, is symmetric and on
the interval [c, 0) it increases from y, to y* = a~*y,. Hence the function y is posi-
tive bounded and Borel measurable.
If now u € N2y, that is, if 4 is a spectral measure of probability distribution
from LS, ., then there exists a finite Borel measure on fe, [elI\{0} such that

{ Acou@ = i e [S(e‘m“‘z_l_Ti’,%-)"’rT(f)dz]v(ds),

Ro k=—00 Ic, |e]I\{0} " Ro

itd'z

9s(2)
| e

ita=%z _ 1.
et Iz

which completes the proof.
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1

Let H be a separable, real Hilbert space with the scalar product (-, -) and the norm
|- 1l. A countable additive and normed measure p defined on the o-field & of Bo-
rel subsets of H is called a probability distribution in H. By usv we denote the con-
volution of the distributions g and » (see [5], p. 57), and by J,, where x € H, we
denote the one-point distribution concentrated at the point x. The characteristic
function /i of a distribution u is defined by the formula

o o) = f e,
H

where y € H. A distribution g is uniquely defined by the characteristic function g
(see [5], p- 152).

For every non-negative number a we define the mapping T, from H into itself
by means of the formula T,x = ax. Further, if is a distribution, and a is a posi-
tive number, then T, denotes the distribution defined by the formula

(Tu)(B) = u(a™E)
for all Ee #&. For a = 0 we put Tou = do. A distribution u is said to be stable
if for every pair of positive numbers a and b there. ex1st a positive number ¢ and an
element x of the space H such that :

TopxTops = Topndy.

In [2] the following theorem has been proved:

Turorem 1. A function o defined on H is the characteristic Sfunction of a stable
distribution in H if and only if either

¢(») = expli(y, Xo)—3(Dy, 3
where x, € H and D is an S-operator, or _
i(y X) 2 2T l(y 3 X)
p0) = exp {10, x9+ 3, [ 0217 i | M@,

H\{0}

[151)
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