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1

Let H be a separable, real Hilbert space with the scalar product (-, -) and the norm
|- 1l. A countable additive and normed measure p defined on the o-field & of Bo-
rel subsets of H is called a probability distribution in H. By usv we denote the con-
volution of the distributions g and » (see [5], p. 57), and by J,, where x € H, we
denote the one-point distribution concentrated at the point x. The characteristic
function /i of a distribution u is defined by the formula

o o) = f e,
H

where y € H. A distribution g is uniquely defined by the characteristic function g
(see [5], p- 152).

For every non-negative number a we define the mapping T, from H into itself
by means of the formula T,x = ax. Further, if is a distribution, and a is a posi-
tive number, then T, denotes the distribution defined by the formula

(Tu)(B) = u(a™E)
for all Ee #&. For a = 0 we put Tou = do. A distribution u is said to be stable
if for every pair of positive numbers a and b there. ex1st a positive number ¢ and an
element x of the space H such that :

TopxTops = Topndy.

In [2] the following theorem has been proved:

Turorem 1. A function o defined on H is the characteristic Sfunction of a stable
distribution in H if and only if either

¢(») = expli(y, Xo)—3(Dy, 3
where x, € H and D is an S-operator, or _
i(y X) 2 2T l(y 3 X)
p0) = exp {10, x9+ 3, [ 0217 i | M@,

H\{0}

[151)
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where xo € H and M is a o-finite measure on H, finite on the complement of every
neighbourhood of zero in H and such that

§ Il < o,
HIxi] <1
and there exists a 0 < p < 2 such that T,M = a*M for every positive a.

(For the proof of this theorem see also [3].)

The parameter p we call the exponent of the distribution x.

The aim of this paper is to give the canonical representation of a stable dis-
tribution in a Hilbert space, which is a generalization of the classical formula of
Lévy-Khintchine (see [1], p. 164). The method of proof, stimulated by the results
of Professor K. Urbanik [7], consists in finding the extreme points of a certain
convex set formed b}} Lévy-Khintchine measures corresponding to stable distri-
butions. Once the extreme points are found, one can apply a theorem by Choquet
on the representation of the points of a compact convex set as barycenters of the
extreme points.

2

Let R* denote the set of positive real numbers, and R its compactification: R*
= R*U {0}u{w}. Let B and § denote the closed unit ball and the unit sphere
of H, respectively. Put Q = BXR¥, and by [x, ¢] denote an element of Q. If B is
endowed with the relative weak-* topology of H, then B becomes a compact metric
space. Thus Q is a compact metric space with the product topology. We define a one-
parameter group L, (s € R*) of transformations of Q by assumihg

€Y ‘ Lilx, f] = [x,s1].
For every element [x, 7] Belonging to Q we put
@ |[x,7]] = ¢.

Each element z of H\{0} can be uniquely represented in the form z = T} (T[gﬂ—) .
Thus, the mapping 7 from H\ {0} into Q defined by the formula

® 2(2) = [ R n]

is an embedding of A™\{0}.ento SxR*. Obviously, we have
@ Il = =01,

® a(Tsy) = Lg(y)

for all y e H\ {0}, and s e R*.

We say that & subset E of Qis bounded Sfrom below if inf{|a|: ae E} is posi-
tive. Let 4 be a finite Borel measure on 0. For any Borel subset E of Q bounded
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from below we put

©) L(E) = § (14 1u=2) Ad),
E

where the integrand is assumed to be 1 if |u| = co. Let M,, where 0 <p < 2, be
the set of all finite Borel measures 4 on Q satisfying the condition

) : @I(E) = LL,(E)

for all positive a and all Borel subsets E bounded from below. By X, we denote
the subset of M, consisting of probability measures. Recall that the space .#(Q0)
of all probability measures on Q is compact and metrizable in the topology of weak
convergence (see [S], pp.-45-46).

LemMA 1. The set K, is convex and compact.

Proof. It is clear that K, is convex. Because K, is the subset of ./#(Q) it is only
necessary to show that X is closed. Let 4, € K, and let A be the weak limit of the
sequence {Z }. If E = Q is bounded from below and A(3E)'= 0, where 3E de-
notes the boundary of E, then I (E) — I(E), because the function 1+ }u|~2 is con-
tinnous and bounded on E. Hence, in view of the continuity of the mappings L,
we have LI, (E) — L,I,(E). Thus the lemma is proved.

Suppose that a Borel subset F of Q is L,-invariant (i.e. L,F = F) for all po-

‘sitive @, and A € M,. Then the restriction /¥ belongs to M, because of the equa-

tions
Lip(E) = LEnF) and L, yr(E)= L,L(EnF).
LEMMA 2. The extrenie points of K, are measures concentrated on one: of the
ollowing sets: {[x, 0]}, {[x, o]}, and {[x t]: te R*}, where x € B. ’
Proof. 1t is easy to see that the sets described in Lemma 2 are L ~invariant for
all positive a, which completes the proof

Lemma 3. If A is a measure from K, concentrated on F, = {[x, t]: tsR*}
then for every continuous and bounded function f on F the following equation holds:

{rena - c.,S () Rt

t,
Fx '

1-(»:2

where ¢, = 2 sm(pz7r )

Progf. Let A be a probability measure concentrated on F. Put
® Li@) = L({[x,t]: t> u}),. weR". S
Hence, and from (7) we have A € K, if and only if for every positive numbers a

and u
a’Jy(u) = J,(u/a)‘.

Setting a = u, we have
(9 ' : i) = w1
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for all positive u. The measure 4 is concentrated on F. Thus the constant J;(I)
is positive. Taking into account (6), (8) and (9), we get the formula

dt

{102 = pry S A%, D
Fx 0
for every continuous, bounded function on F. Setting f = 1, we obtain pJy(1) =
—1—2; sin —2— Thus the lemma is proved.
LeMMA 4. For each x € B, there exists a measure from K, concentrated on F,.
Proof. We define a measure 4 on sets E of the form {[x,#]: ¢ < < d}, where
0 < ¢ < d < 0, by the formula

1+t2

d [
ME)=¢, Smdt_‘
e .

It is easy to see that A is uniquely defined on all Borel subsets of F,. Moreover, 4
is a probability measure. For all sets E and distribution A condition (7) is fulfilled.
Thus 1 belongs to K,,, which completes the proof.

By Lemmas 3 and 4 we have the following

COROLLARY. For each x € B, there exists exactly one measure from K, concen-
trated on F,.

Let my, 17, Where x € B, denote the unique probability measure concentrated
on Fy, and let mye 4y = Opx,qy if either a =0 ora = oo,

By (1), (3) and Lemma 3, for any function f continuous on Q we ‘have the
formula

'y Sl ' 4
o) Vo = o, § it Lz as
]

Q
Further, if y belongs to the unit sphere S in H, then we have the equality

an

{0man@ = & 72m0)) S ds
Q 0

Let us consider the following subsets of Q:

4; = {[x,1]: xe B and ||x|| < 1},

(12 A; = {[x, d]: xe Band eithér a =0 or a = w0},
4; = Sx {1}

and

13) A=A, UA;UA,.

The set A is compact, as a closed subset of Q. We note that the mapping z — m,
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from A onto the set ex(K,) of extreme points of K, is one-to-one and continuous.
Hence by a well-known theorem (see [4], p. 11) we conclude that this mapping
is a homeomorphism between '4 and ex(K,). Once the extreme points of K, are
found, we can apply a theorem by Choquet (see [6], Chapter 3). Since each el-
ement of M, is of the form cy, where ¢ > 0 and » € K,,, we get the following

LEMMA 5. A measure u belongs to M, if and only if there exists a finite Borel
measure w on A such that for each continuous Sunction f on Q the following equation
holds:

§feu(an) = S {rem.(@o@s),
Q 40 )

where set A is deﬁned by (13).
3

In the sequel we shall use the following representation. The characteristic function
[i is infinitely divisible if and only if it is of the form
7 2
09 30) = o fi@, =403, 9+ § [e0m-1-7 23] SHEE v,
o T+l ) 1]

where a is an element from H, D is an S-operator, and v is a finite Borel measure
on H~ {0}. The triplet @, D and y is uniquely determined by u. The measure y
will be called the Lévy—Khintchine measure.

LemMA 6. The characteristic function of the form (14), where D = 0, is stable
if and only if there exists a 0 < p < 2 such that the Jfollowing equation holds

141175 ]2

a3 7

arp@) = | L0 (T

-
I T+l
for all positive a, and all Borel subsets-E of H\{0}.

Proof. The measures M in Theorem 1, and y" in (14) are uniquely determined,
whence follows the equality

iy = {12

EW M(dx).

In view of Theorem 1, by a simple computation we obtain formula (15). Thus the
lemma is proved. )

LEMMA 7. A finite Borel measure y on H\{0} is a Lévy-Khintchine measure
of a stable distribution if and only if my belongs to M, for a certain 0 <p < 2.

Proof. Let E be a Borel subset of 0 bounded from below. Taking into account
(4), (5), (6) and Lemma, 6, we have

S L+ |fuf?
2
S

1+u?

iy = {EEE @ = 1oy
: E
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and :
Ll P LT gy Sy
| i T i @ ) T = R,

Consequently, by (15), y is the Lévy-Khintchine measure of the stable distribution
if and only if wy € M.
THEOREM 2. A function ¢ on H is a characteristic function of a stable distri-
bution with exponent 0 < p < 2 if and only if
iy, x)s
1+SZ ) SP+1 ] (dx)}

where x, is a vector from H and v is a finite Borel measure on the unit sphere S of H.

(16)  9(») = exp {i(y, ;:0)+S [S (eiw,x)s_l_
o]

Proof. Necessity. Suppose that the distribution u is stable with exponent p,
where 0 < p < 2. Then its Lévy=Khintchine measure y is finite on H\ {0}, and
by Lemma 7 the measure zzy on Q belongs to M, (with the same p). By Lemma 5,
there exists a finite Borel measure w on the set 4 (see (13)) such that for every con-
tinuous function f on Q we have the equation .

an Sf(u)ny(du) = SSf(u)mz(du)w(dZ)-

It is clear that the measure sy is concentrated -on the set m(H~\ {0}) = SxR*.
Consequently, by (17) the measure w is concentrated on the set A5 (see (12)). Since
for z € A; the measures m, are concentrated on F,-1,, formula (17) can be rewritten
in the form

s § fymy@ = § § fem(aeds)

SxR* As Fposy

for any continuous and bounded function on SXR*. We introduce a finite, non-
negative measure ¥ = ¢,z "'w on the unit sphere S.in H. Then for every continuous
and bounded function g on H\ {0}, in view of (3), (5), (11), (18) and Lemma 3,
we get the formula

19

| sorn - S[§ 807 o] v,
s

H\{0}
Setting

oo i(y,x)] 1411x]2
50 [e =T e i

where y € H, into the last formu]a, and then setting Tyx = sx ‘we gét represen-
tation' (16). Thus the necessity of the condition is proved.

Sufficiency. Suppose that the function ¢ is given by formula (16). First we
note that ¢ is a limit of products of Poissonian characteristic functions of the form

expe i()'.b)ll l(J’s b) }(,,,o)
P [e TaE] e
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where ¢ > 0 and b e H\ {0}. Thus ¢ is the characteristic function. of an infinitely
divisible distribution (see [S], Theorems 4.1 and 4.10, p.110). We note that the in-
tegrals

[}

S w—r

3 A+A)(A +a*u 2)
are finite for 0 <p < 2, a>0. By a simple computation, we show that, for every pair
of a positive numbers a and b, there exist a positive number ¢ (¢ = (a”+b5")*/") and
an element x of H such that p(ay) - p(by) = ¢(cy) - €9® (y € H). Thus ¢ is the

characteristic function of a stable distribution, which completes the proof of The-
orem 2.

TaeoreM 3. (Canonical representation of stable distribution.) 4 function ¢
on H is the characteristic function of a stable distribution in H if and only if

N
P() = exp {l(y’“) §[1+l 10, %)

where a is a vector from H, g is a finite Borel measure on the unit sphere Sin H,
parameter p belongs to the interval (0, 2] and

o(7)

2 1ogl0, )

(20) oy, xyp)] (6 x)l"e(dx)},

if O<p<2andp#1,

@ w(y,x,p) =

if p=1.

Proof. Let 0 < p < 2. By the same computation as in the real case (see [13,
pp. 168-171) we get the formula

i(y, x)s ] ds

1+S2 sl7+1 -

©

S [ei(y.xw_ 1—

[

c[l+t 0, %) w(, x,p)][(y,x)!"+i(y,x1),

D

where ¢ is a nonnegative constant, x, is a vector from H, and w(y, x, p) is described
by (21). Setting it into (16), we get formula (20).

Let p = 2. The function y(») = exp[—%(Dy, y)I, where D is an S-operator,
is the characteristic function of a distribution with the property:é]lx]l“y(dx) < 00,

and (Dy,y) = S(y, x)?u(dx) (see [5], p. 164). Let us introduce a finite Borel mea-
"

sure » on H by the formula »(E) = {{|x[|?u(dx), and a mapping f from 0 {0}
E

onto S by the equality f(x) = . Then we get the formula.

x
I
0y, = | O, 9% @)

Thus the stable distribution with the exponent p = 2 also has the characteristic
function of form (20), which completes the proof.
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Remark. The function ¢ in (20) does not determine the measure o. In fact,
consider H = R and p = 2. Then

@(t) = exp{—c|t]*},
where ¢ > 0, is the characteristic function of a symmetric normal distribution. It
is easy to verify that for i
0:(E) = ¢8,(E)
and

0:(B) = =01 (B)+5- 0,(E)

we have the formula

{10, D120 = ey G =1,.
S

Thus, the measure g is not uniquely determined by ¢.

Added in proof

After this work was completed I found a paper of J. Kuelbs in Z. Wahrscheinlichkeitstheorie
und Verw., Gebiete 26 (1973), pp. 259-271, where the canonical representation of stable measures
was also obtained. However we note that our methods are enterily different.
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1. Introduction

The paper treats the same subject as paper [4], namely the dependence of the asymp-
totic behaviour of the criterion functional (the reward) on the asymptotic behav-
jour of the control. But it concerns chains with a countable state space. In this
case additional hypotheses on the transition probabilities of the system are required
to ensure the stability of its basic parameters. In stating these hypotheses, we begin
with a Liapounov type condition for the existence of an optimal stationary policy
introduced in monograph [3]. The methods of this monograph are used in Section 2.
In the remaining sections, where general non-anticipative controls are investigated,
the validity of several Liapounov type conditions is assumed.

We consider a system S, which is observed at times 0, 1, 2, ..., and has count-
ably many states labelled by numbers 1,2, 3, ... We write 7= {1,2,3,...}. Let
X, be the state of S at time n. We assume the following law of motion: For arbitrary
i€ I, whenever S is in state i, the probability distribution of the next state is
6] {p(G,1;2,p(,2;2, ...}, zeZ().
zis a control parameter ranging in a compact metric space Z(i). The probabilities
p are supposed to be continuous in z. They are transition probabilities of S.

Under a stationary control policy the control parameter value is a function
of the actual state of S only. This function is a vector ¢ € FOXZDX ... = Z™,
The random sequence {X,,n=0,1,..} is then a homogenous Markov chain
with transition probability matrix

Po = ”P(’l]! ((7)1)”!,1‘61-
(0); denotes the ith component of the (column) vector o. Space Z® is called the
set of stationary policies. Under -policy o the control parameter value at time n
equals
(2) . Z, = (O’)x“, n=20,1,..
The random sequence {Z,,n = 0, 1, ...} is called the control.

[159)
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