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Remark. The function ¢ in (20) does not determine the measure o. In fact,
consider H = R and p = 2. Then

@(t) = exp{—c|t]*},
where ¢ > 0, is the characteristic function of a symmetric normal distribution. It
is easy to verify that for i
0:(E) = ¢8,(E)
and

0:(B) = =01 (B)+5- 0,(E)

we have the formula

{10, D120 = ey G =1,.
S

Thus, the measure g is not uniquely determined by ¢.

Added in proof

After this work was completed I found a paper of J. Kuelbs in Z. Wahrscheinlichkeitstheorie
und Verw., Gebiete 26 (1973), pp. 259-271, where the canonical representation of stable measures
was also obtained. However we note that our methods are enterily different.

References

[11 B.V. Gnedenko and A.N. Kolmogorov, Limit dlstrzbutmns Sfor sums of indepen-
dent random variables, Addison-Wesley, Cambridge 1954,
[21 R. Jajte, On stable distributions in Hilbert space, Studia Math. 30. (1968), pp. 63-71.

[B1 A. Kumar and V. Mandrekar, Stable probability measures on Banach spaces, ibid. 42
(1972), pp. 133~144.

[4] K. Kuratowski, Topologie II, Warszawa~Wroclaw 1950.

[SIK.R. Parthasarathy, Probability measures on metric spaces, New York-London 1967.
[6] R.P. Phelps, Lectures on Choguet’s theorem, Princeton 1966,

[71 K. Urbanik, Lévy’s probability measures on Euclidean spaces, Studia Math. 44 (1972), pp.
119-148, ‘

Presented to the Semester
Probability Theory
February 11-June 11, 1976

icm®

PROBABILITY THEORY
BANACH CENTER PUBLICATIONS, VOLUME 5
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1979

ON THE ADAPTIVE CONTROL OF
COUNTABLE MARKOV CHAINS

PETR MANDL

Charles University, Prague, Czechoslovakia

1. Introduction

The paper treats the same subject as paper [4], namely the dependence of the asymp-
totic behaviour of the criterion functional (the reward) on the asymptotic behav-
jour of the control. But it concerns chains with a countable state space. In this
case additional hypotheses on the transition probabilities of the system are required
to ensure the stability of its basic parameters. In stating these hypotheses, we begin
with a Liapounov type condition for the existence of an optimal stationary policy
introduced in monograph [3]. The methods of this monograph are used in Section 2.
In the remaining sections, where general non-anticipative controls are investigated,
the validity of several Liapounov type conditions is assumed.

We consider a system S, which is observed at times 0, 1, 2, ..., and has count-
ably many states labelled by numbers 1,2, 3, ... We write 7= {1,2,3,...}. Let
X, be the state of S at time n. We assume the following law of motion: For arbitrary
i€ I, whenever S is in state i, the probability distribution of the next state is
6] {p(G,1;2,p(,2;2, ...}, zeZ().
zis a control parameter ranging in a compact metric space Z(i). The probabilities
p are supposed to be continuous in z. They are transition probabilities of S.

Under a stationary control policy the control parameter value is a function
of the actual state of S only. This function is a vector ¢ € FOXZDX ... = Z™,
The random sequence {X,,n=0,1,..} is then a homogenous Markov chain
with transition probability matrix

Po = ”P(’l]! ((7)1)”!,1‘61-
(0); denotes the ith component of the (column) vector o. Space Z® is called the
set of stationary policies. Under -policy o the control parameter value at time n
equals
(2) . Z, = (O’)x“, n=20,1,..
The random sequence {Z,,n = 0, 1, ...} is called the control.

[159)
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Further, we associate with the trajectory of S an additive function of the state

and of the control
' N-1

Ry= D) r(X,,Z), N=12,..

n=0
r(i, 2),iel, z € Z(i) is a function continuous in z. We shall call Ry the reward up
to time N. If (2) holds, we can also write

N-1
Ry= (o N=1,2.
n=0

rq is a vector such that (r,); = r(i, (o)), i€ L
In the general case we understand under control a non-anticipative one. This

means that Z, is a function of X,, X, ..., X,
(3) Z, = CU,,(XQ, ~-~:Xn)n n=20,1,..,
and that ‘

PX,py = ilXo, ..., X)) = p(Xy, i52Z,), n=0,1,..

2. Stationary policies‘
Let ¢ € . The mean reward under policy o is

Im N-1Ry = ps
N—+w
provided that the limit exists almost surely (a.s.), and that u, is a constant. A
stationary policy & is optimal (with respect to the mean reward) if
* up=j owhere A= sup .
oeZ © .
Monograph [3] contains the following sufficient condition for the existence

of an optimal stationary policy. To formulate it, we denote for i, € I by B, the ma-
trix which is obtained from P, by replacing the elements of its i;th column by zeros
(column-restriction). e denotes the vector whose components are all equal to 1.
All vectors are infinite-dimensional. The symbol H, (r,) for the hypothesis is used
to point out the vector (family of vectors) to which the condition refers.

H,(r,). There exists an i, € I and a vector y, > 0 such that

0 Irl+e+Poyi <y, oeZ™
(i) lim P¥y, =0, ceZ=.
N—+o
(i) lim Py, = Poyi, oo 2%,
(If a is a vector, then |a] is the vector whose components satisfy (|a]); = [(@),

i el Analogously we define a2, etc. The convergence of vectors is component-wise
convergence.)
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Assumption (i) is a Liapounov-type condition ensuring the existence of u,
for all o € Z®. Namely, from (i) follows

-0

. © :

-~ N~
D Bre<y, Y Binl <.
n=0 n=0 L P
The first inequality shows that the transition probability matrix P, belongs to a Mar-
kov chain with one class of positively recurrent states, and possibly with transient
states. According to [2] (Theorem 15.1)

. N-1 © )
lim N-1 . = pr pn =
Im N3 G, (35 72r), / (37, = o as
Since : ’
el < O,
{1 is finite.
TaeoreM 1 ([3]). Let H,(r;) hold. Then there exists an optimal stationary strat-
egy- . . 5
The proof is divided into a sequence Of lemmas, needed also in subsequent
sections. (iii) implies the following proposition: )
Lemma 1. Let {gn,n=1,2,..} be a sequence of vectors, || S"c'oﬁst'yj,
limg, = g,. Further, let {o,,n=1,2,..}, 0, € Z%,lim 0, = O Then'

n-r o n-o0

Iimf’,nq,, = I;% G
n-» o0

LeEMMA 2. Define

Xo = Y1 xn+1=supPaxn’ n=0,1, ..
o

Then
Py Py . Py Y1 S Xus 0oy ees Oy EZ®,
Xpp1 € Xpy n=0,k ..., limx,=0.
o : - 00

Proof. The inequalities follow by induction, since in virtue of ® ﬁ,xo. < Xo,
o€ %, and hence x; < x,. Further, write x,, = lim x,. Then

n-oo o S

“@ Bxs < li__mf’gx,. < limx, = X,, oceZ™.

-0 n-+00

Let {o,,n = 1,2, ...} be chosen so that

Xui1 S PoXp+n~te, n=1,2,.., lm Op = oy
By Lemma 1, ) ‘ e ‘
[©) X < linclo By x, = I;,,m Xe-
@, (5) imply '
X = f,mxw = ﬁgwxm < ﬁé',,o'yl -0,
in virtue of (ii). m : '

11 Banach Center t. V
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LeMMA 3. For an arbitrary sequence {a,,n = 0,1, e}

o0
D BoyBo, .- Papalro,—frel < (L+ | ys

n=0

(A void product is the unit matrix.)
Proof. For an arbitrary N

[roy— il + (L + 12D Poyys < (+1ADY:

Fays — el + Poye IFon— il + (L) Payoy Poyys < (L)Y 5
N . .

3 By B, o By lrog— fiel + (U D) Py .. Poyi < (L+1aDyy. =
n=0

COROLLARY 1. We have

[Je

© By B (D By o Py o hitl) € (413, n=0,1, ..

m=0

1

with x, as defined in Lemma 2.

LemMA 4. Define
N

Wy = Ssup Z ﬁ,,n };,l f’,,,_‘(r,,,— ).

Toye0sON "=o
There exist &, ..., Oy Such that
-1 . .
Wy = Z f’;oPQ, v Py, (ra—pi€).
n=0
Moreover,

Wy = sup{r,—ﬁe+f,w~_l}, N=1,2,..
a

The proof is by means of induction using Lemma 1. m
Introduce

w=sup 2 B, ...P‘,,._l(ra"—ﬁe).

B0y 015 e
By Lemma 3, |w| € (1+|a)y;.
LeMMA S. w satisfies
M w = sup {r,— fie+ Pow}.
a
Proof.

0

8) w= sup jr,—fie+P, B
® w= s foper, 3 R,

p

e f’,ﬂ_,(r,,,-—ﬁe)}g sup {r,—jie+ B,w}.

ADAPTIVE CONTROL OF COUNTABLE MARKOV CHAINS

To demonstrate the reverse inequality we use (6) to get

Mz

I
<l

n

Hence,,

lwy—w| < (1+ lﬁDlex .
From

Wy > r,—jie+ P, Wy_
then follows

Wt (L4 ) Xvss = ro—fie+ Pyw—(1+|2]) Pyxy
= r,,—ye+P.,w SR S
Since N was arbitrary, and, by Lemma 2, lim xy = 0, we get
N-o0

® W > ro—pet Pow.
(8), (9) are equivalent to (7). =
LEMMA 6. There exists a ¢ € & such that

(10) w = ry—jie+ Pyw,
o
an w= Y Birs—fe).
n=0

Proof. (10) is proved by using Lemma 1. From (10) we get successively

Z BA(rs—fie)+ PY*'w.
=0
Furthermore,

1P W] < (141D Xy 1 0. m
COROLLARY 2. (W);, = O.
Proof. From the definition of 2 follows

0 0 ‘
(8, [ (D Be), < iin ien (<0
n=0 n=0
On the other hand, for an arbitrary e > 0 there exists a ¢ such that

L) o
(Z ﬁ;r,)il / (Z };Ze)h > fi—e.
n=0 n=0

Hence,
), > (Z P"(r,,—‘ue)) > —e(i,-

Since £ was arbitrary, the assertion is proved. m

u-

o0
P . P.,"_‘(r‘,n—ﬁe)-— Z 13,,0 ﬁvn-,("ﬂn",f‘e)’ < +IﬁDxN+1 .
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Proof of Theorem 1. By Corollary 2,

o0

oo = (B ) (B P =

n=0 n=0
Consequently, & is-an optimal policy. m
COROLLARY 3. With regard to Corollary 2 (7), (10) can be replaced by

(12) w = sup {r,—jue+Pow},

(13) w = ry—fie+Psw.

THEOREM 2. Let H 1(rs) hold, Then 1 is'the unique rumber for which there exists
a vector w satisfying. (12) together with |w| < consty,. w is determined up to a shift
for a vector const e.

. Proof. Let
14) up{ra pe+P,w}.

By means of a shift we can achieve (w);, = (W);,- From (13), (14) folIows
W= < G+ Paly=T) = (i De+Pyw—).

N-1
W= < (i ﬁ)(Zo

B

Hence,

se) + B (w—).
Further, by (), -

0= (W-W)n1 (.M M)( 3 ﬂSe) ‘i.e., e

n=

Since % and ,u, can be mterchanged we conclude that 4 = u. Therefore

<PA(w—w) or. w—w< PA(w—W),n-l 2,

Letting n — o0, we get w—w < 0. The reverse inequality is proved in the same

way. m

COROLLARY 4. Let 6 € ™. u; is the umque number for which there exists a vec-
tor ws such that \w;| < consty,, and

as
w3 is determined up to a shift for a vector const e.

Progf. The assertion is Theorem 2 applied to the special case where 2’ con-
sists of one point only. m .

= fa-ﬂae'FPaW;—'

Wg:

3. Law of large numbers

Here and in the subsequent sections we: shall not limit ourselves to stationary poli-
cies. However, we have to make stronger assumptions. The basic one is the follow-
ing: : e WL
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H,(r,). We have H,(r;), and there exists an i, € I (index. of colimm restriction)
and a vector y, > 0 such that

(l) y1+Pay2 yz, O'Eﬂ’m
(i) lim Ply, =0, ceZ>
N-o0

(i) limP,y,'= P, y,,

We can also write briefly H,(r,) = H,(r,) &H;(¥?). The validity of H,(r,) is
assumed throughout this section. Further, let (3) hold, and let X, be non-random.
Let 0 € 2™ be fixed. The subscript & in g, ws will be omitted” We are going to de-
fine a measure of difference between the actual parameter value Z,, as given by. (3),
and the value ()y,, vyhich corresponds to the stationary policy G. .. .

Introduce

PO D =1 D=t D 0,5 A=), Tl 220,

0o EZF®,

Since |w| < consty,, the series on the right converges absolutely, ¢(i, z) is a con-
tinuous function of z, and |p(%, 2)| < const(y,);, i €1, ze Z (). (15) can be writ-
ten as (i, (6);) = 0. The difference in equation (15) at time » therefore equals

(16) ‘p(an Zn) = ‘P(*Ym Zn) ‘p(Xn; OXn) n= 0: 1:
The applicability of the quantity ¢ is based on the’ fact that
N—
A7) My = Ry=Nat0hxy— e, = | WL Z), V=12
n-O .
is a martingale. (We set M, = 0.) To verify’ thls, 1ntroduce the martingale differ-
ences _ .
(] 8) Y = Mn+1 Mn

= rX,, Z)—p+ (W)X.m (W)X.._(P(Xna Zn)
and the o-algebras ¥, = oa(Xo, ..
tory up to time n. Then 3

E{Y\,} = 1y, ZY)— 4D 0K, i ZYWy— D, (K, Z) = O
i

n= 0, 1, aeny
.,X,) of random events defined on the trajec-

Before demonstrating the law of large numbers for {M,,n=0,1,
derive an auxiliary result.

LemMA 7. We have

} we

N-1

Bm N Y E(r(X,, Z,)*+ (yi),,n) const,

(19)
N-oo n=0
0) > CPE(r(X,, Z)+ (yi)x,) <@, y>0.1

n=1

The constant in (19) depends neither on the control policy nor on the initial state:
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Proof. H,(r,) implies
P, 22+ OD+2 ) pG s D) < 2020+ 200, i3 )2y
7

< 2002)i+2(2di,, i€l ze Z(i).

Hence,
E(r(X,, Z,* + (¥Dx,) +2E(y2)x,., < 2E(2)x,+2(¥2)s,
Adding forn = 0, ..., N—1, we get
N-1
@ Y E(r (K Z 4+ 0D) < 205, + 2N 0,

From here (19) easily follows.
Denote by Sy the sum on the left-hand side of (21). Then

]

Z "(1+V)E(r(Xn s Z)2+ (1 )Xn

n=1

0
Z S,.+1(n“1+7’—- n+1)-¢ +‘r))
n=1

©

< const Zn‘(””. ]
i

LeMma 8. We have

2) ImN-*My = 0 as.,
N-ow
23) limN—2EME = 0,
N0
Proof. We have

Y7 < const(r(Xy, Z)2 + (0Dx,+ 0Dx,,,)-

With regard to Lemma 7 it follows that Z n-2EY} < o, which is a sufficient con-
dition for the validity of (22). Further, from 19), .

N-1
fmN-EM} = TmN= ) EY; <const Jmn- ZE(r(X,., Z)*+(x,) = 0. m

Now N-+ao =0

11:"1'om Lemma 8 we deduce the following assertion about the convergence of
N-'Ry

THEOREM 3. Let H, (r,) hold. Then
limN-1Ry =

N-roo
in probability (a.s.) if and only if
N=1

lim N1 =
ImN-t )90k, Z) = 0
in probability (a.s.). Likewise, for k = 1,2,
(LR ‘ lim E|N-' Ry~ pul* = 0

- N .
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holds if and only if
N-1 .
25 Lim N-*E X, Z)l = 0.
(25) JmNE|Y 9K, Z)

Proof.kBy Lemma 7,

o0
EY n 20}, < .
n=1
Hence,

00
> 20, < 0 as,  HMN-I(py, = 0 as.
f) Now
This implies
lim N~*(w)x, = 0 as.,
N—o0

lim N—2E(w¥)x, = 0.
N-

Lemma 8 and (17) then imply

N-1
26) | lim (V2R — N1 Zo ¢(X,,, Z)) =0 as,
@n lim E (N~! Ry~ g~ N+ 2 (p(X,,,Z,,)) =0.

N

From this the assertion of the theorem is obtained without difficulty. m
THEOREM 4. Let H,(r,) hold. Then under arbitrary. control

(28) . Hm N-'Ry < 1 as.,
N-ow
29 . WmN—ERy< j.
N-ro0

Proof. Assume & = &, where & is such that (12), (13) hold. Consequently, 4 =
foand @(i, 2) € 0, i €I, z € Z(§). Thus from (26) follows
N-1
pl]lmN 1Ry = ,u+ th“1 Z Xy, Z,) < i a8,
- 00 =0
Analogously, (29) follows from (27). m
Theorems 5, 6, which also rely on Theorem 3, will be preceded by a sequence

of lemmas. Define vectors e, di, k = 0, 1, ... as follows:
(i = @) =0, i<k, (ei=1, @)= 2 k.
Recall that y, > e. Hence, d, = ¢,k = 0,1, ...

o 0 N
Lemma 9. Z Pre,, Z f;d,,, k=0,1,.., depend continuously on oeZ.
n=0 n=0

(f’,, column restriction in i,.)
The proof by the methods of Section 2 is not difficult. m


GUEST


168 ) : P. MANDL
Set
I &
g,(k) = (ZO 33’6)12( 2 Pge)lz s
- s = (52 (5

30 = supe, ),
(k) = supP(k).

Obviously, 4(k) = 8(k), & = 0, 1, ... The analogy between £, 9, &, &, and P o
from the preceding section is evident.

LEmMA 10. We have
@D lim&(k) = 0 = lim B(k).
k-0 k=

Proof. If (31) were not true, a § > 0 could be found such that Aﬁ(k) > ¢ for
k = 0,1, ... Consider a sequence {0y, k = 0, 1, } satisfying 9,,(k) > 6. Since #*
is compact, {0y, k = 0,1, ...} has an accumulation point c,,. Let m be a positive
integer. By (30) and by Lemma 9, #,(m) is a continuous function of o. Consequently,

Doy (M) = I{im By () > kiﬂfmuk(k) >6>0.

This is a contradiction, because lim #,,(m) = 0. m

LemMa 11. We have
N-1 .
(32) fm N Y P, > B <i®), k=0,1,..
N-roo =0

If, in addition, B, (y,) is valid, then

N-1

33) Ty Zﬂ Lo nOn, < D) as.,
N-1
34 TN~ Y Epo e, < 3,  k=0,1, ..
N-s oo =0

N-1 )
Proof. (32) is (29) with Ry replaced by D, %(x,»#. Analogously, under H,(»,),
n=0 . .

(33), (34) are counterparts of (28), (29). m
THEOREM 5. Let H,(r,) hold. If

39 lim o(Z,, (?x,) = 0 in prob.,
then e
(36) lim E[N='Ry—u| = 0.

N—oo

(o is the distance.)
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Proof. Assume (35). By‘Theorem 3, we have to demonstrate

N-1
3 LmN-E X, Z,)| = 0.
@7 LN E|Y 905, 2)] = 0

Let L > 0,k > 0 be numbers, k an integer. Write

N-1 N-1
Bl
N Z ¢Xns Zp) = N _12 Dt <y 4083 13 K010y, < DV Xt 13 K3y, > DIP K, Zo)
n=0 n=0 '

Since |p(X,, Z,)| < const(y,)x,, we obtain

N-1

NE| 9%, Z2)

S
SN Y Elggeup(ha, Z2)] +
n=0

N-1 N-1
+LconstN~ )} P(X, > K)+LconstN-* ) EGD)s,
n=0 n=0

It is easily seen that
lim |X{Xn<k}(p(Xm Zn)l = lim Z{X..<k}|99(Xn, Zn)"‘¢(Xna (&)X,,)! =0in PrOb-
n—m n-+rco .

Hence, with regard to the boundedness of the integrand,

N-1
lim Elgzcnpa, Z)| =0 or  Hm N Y Elgmeinp®y, Zn)| = 0.
n—w N- n=0

By Lemma 11,

. N=-1
38) fim LeonstN =1 )| P(X, > k)< Leonsta(k),
N-w n=0
and by Lemma 7,
N-1
(39) lim L~1constN—! Z E(?)x, < L~*const.
. N—oo n=0

The right-hand sides of (38), (39) can be made arbitrarily small by a proper choice
of L and of k according to Lemma 10. We conclude that (37) holds. m

THEOREM 6. Let H,(r,) and H,(y,) hold. If
lim ¢(Z,,@)x,) = 0 as,
then

(40) limN-'Ry = p as.

N-ox
Proof. We have to verify

N-1
@1 lim N1 p(X,, Z,) = 0 ass.
N—w =0
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Under the hypotheses of the theorem,

N=1
fim N Z 9 (X, Z,)
N n=0
N-1
< HmN-! ’Z Lxa< i@ X Zn)ﬁ- hm constN Z Zxez (P x,
N-+

< const'ﬁ(k) a.s.

Letting k — o0, and using Lemma 10, we obtain (41). =

4. Central limit theorem

In this section we assume H,(r,) and H,(y}). This implies H,(r;). First we shall
consider the validity of the central limit theorem for the martingale {M,,n =
,1,...} defined by (17). The following result is known from martingale theory
([1p:
Lemma 12. Let {Y,,n = 0,1, ...} be as in (18). Further, let
; N-1
“2) lim Nt D E{¥2\F.} = pa inprob,
n=0

where u, is a constant, and for each ¢ > 0 let

N-1
(43) Bm N~ Y E¥2r, 5oy = 0.
N-w 750

Then My/ 1% N, as N — o, has an asymptotically normal distribution N(O, u,).
Replacing in Lemma 7 r by y? we get the next lemma.
Lemma 13. We have

N-1
}1;1_’30 Nt ; E(yPx, < const,
@4 EZ “”‘”(yl) <w, y>0.
COROLLARY 5. We ha:: 1 .
(45) limN-? 2 EY} < const,
N-wo =0

and, consequently, (43) is fulfilled.
Progf. (45) follows directly from the definition of {¥,,n = 0,1, ...} and from
the inequality |w| < comsty,.
Further, for ¢ > 0,
N-1 N=1

Fm N1 > E¥2 yvmevmy < Tim e2y D Evt=0.m

Now n=0 n=0
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Consider (42). (18) implies
E{Y}|F,} = B{(rX, Z2)— ) +2(r(Xe, Zo)— 1) 09}z, +
+ (W), — W, = 2(r(Xny Zo)— p+ (W), —
- (w)X,.) ((W)X,,+ ‘P(Xm Zn)) + ‘P(Xn B Zn)zlyn}
= rz(Xn: Z,,)-I-E{(Wz)x"“ [ﬁ'—,,}— (WZ)X-_

- (p(Xn s Zn) (Z(W)X,, + (P(Xn s Zn)) 3
where
(46) ry(i,2) = (r(, 2)~p)?+2(r(l, 2)- ,u) pG,j; )W)y, iel, zeZ().
Consequently,

N-

N-1
@n N Zo E{¥2|#,} = N-* {Z n(X,, Z)+ Z [E{0)x, |0} — 092, 1+

n=0

N-1
+ [V — )z, ] - Z oK, Z) QW+ 9, ZD)), N =1,2, ..

=
Let u, denote the mean reward under pohcy ¢ if the trajectory is valued by
(46). According to Corollary 4, u, satisfies
0 = ryg—pae+Pawys—wy.
Note that |r,,| < consty}. Thus H,(y?) implies H,(r,,)-
THEOREM 7. Let Hy(r,) and H,(y?) hold, and let

lim ¢ (Z,, (@)x,) = O in prob.
n—
If also ®

N-1

lim —::Z o(X,, Z,) = O in prob.,
N-owo 1/ fomr

then (Ry—Nw)|Y'N has an asymptotically normal distribution N(O, u;) as N — co.

Proof. We first verify the hypotheses of Lemma 12. (43) holds by Corollary 5.
To prove (42) we use (47). Since H,(r,,) is valid, we get from Theorem 5
N-1

lim N1 Z ry(Xy, Z,) = p, in prob.

N-owo n=0
The second term on the right-hand side of (47) is a martingale fulfilling the law of
large numbers in virtue of {w| < consty,, and of Lemma 13. Further, we have
N-1(w?y, < constN-*(p})x, - 0 as.,
by (44) for y = 1. The negligibility of the last sum in (47) is established by the meth-
od used in the proof of Theorem 5, since
lp(Xa, Z2) Q0W)x, +9(Xn, Z)| < comst(xl, n=0,1,...
Hence, (42) is demonstrated.
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Further, write
N-1

N-U2pfy = N-Y2(Ry—Np) +N-1/z((w)xN_ (W)x,)—N-12 Z o(X,, Z,).
. n=0

By Lemma 12, the left-hand side is asymptotically N(0, ,) as N — co. The last
term on the right is negligible by the hypotheses of the theorem. The negligibility
of the last but one term follows from (44). This demonstrates the theorem. m

5. Law of iterated logarithm

Here we iﬁnpose the hypotheses H,(#,) and H,(y,).

LemMmA 14. If
limg(Z,, @®)x,) = 0 as.,
n-c0 .
then
N1
(48) lim ZE{Y %) = s as.
N-oo n=0

Proof. The proof is based on (47), and is analogous to the verification of (42)
in the proof of Theorem 7. The difference is that by Theorem 6 the stronger assump-
tion H,(y,) implies

N—1 .
zyf;N_‘,,Z(:, 1:(Xs, Z,) = p, as.”

Also, when estimating the last term in (47), we procecd as in the proof of Theorem
6. m

A simple consequence of Theorem 3 in [5] is the subsequent lemma, needed
for the proof of Theorem 8.

Levma 15. Let (48) hold, and let fora 6 > 0

o

“9) D npyE < o,
- n=1
Then
(50) fﬁi (2NloglogN)~*> My = Y, a.s.

THEOREM 8. Let H,(r,) and H,(y,) hold, and let
limg(Z,, (®)x,) = 0 a.s.
n—o0

If also .
N-1
B 12 .
lim (VloglogN) Zo ¢(Xo, Z,) = 0 ass.,
then

iﬂ T (2NloglogN)=**(Ry~Np) = Y s a.s.

icm
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Proof. (48) and (49) are valid by Lemmas 14 and 13, respectively. Write
+ (2NloglogN) ™ (Ry—Np) = +(2NloglogN)~"*M

N-1

 (NIoglog)™ ()ey= (¥),) 2 (N loglog) Z (X, Z,).
=0
The last term is negligible by hypothesis. Since |w| < consty, , (44) for y = 1 implies

lim (2NloglogN)~*2(w)x, = 0 a.s.
N—co
Hence, the last but one term is also negligible. The assertion of the theorem is thus
a consequence of (50). =
Remark 1. All Liapounov type conditions imposed in this paper are satisfied
if there exist positive numbers », d, and state i, € I such that
r@, 2l < %, p(,i;2)2 6,
H, (r,) then holds with y; = §~1(x+1)e. Namely,
@) Irel +e+Poys < (w414 87 e+ DA 8))e = y1,
(i) hm P,, y < hm 01+ 1)(1=-0)e=0, oceZ™

iel, ze Z(i).
oceZ™.

(i) lim (Popi = lim 8~1(e+1)(1—p(i, is3(0)))
=00 o—0o

= 071 e+ D(1=p (0, i1, (000)) = By,
, is also bounded. Thus, in the same way, we verify H,(r,), Ho(5?) and Hy(y,).

iel,oo e Z™
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