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1. Introduction

Homogenization deals with the following general phenomenon. Let us consider
a model describing some physical system, with a periodic spatial structure. More
precisely, the model (in general, a partial differential equation or an integro-differen-
tial equation) involves coefficients depending on the space variable in a periodic way,
but with a very small period ¢ (to simplify the same in all directions). Such a situation
occurs in many concrete applications, especially in the field of composite materials,
or nuclear reactors. More generally, one can think of rapidly varying coefficients
not only in the space variable, but also in the time variable, in which case the ter-
minology “averaging” is more standard than “homogenization”.

The problem concerns the behaviour of the model as ¢ — 0. A reasonable in-
tuition is that the e-model can be approximated with a model describing the same
type of physical phenomenon, but with homogenized coefficients. In other words,
the homogenized coefficients will be some mean of the original coefficients. Such
a statement turns out to be true in many cases. However, the computation of the
right mean does not correspond in general to what can be guessed a priori, and in-
tuition can be very misleading.

Although homogenization problems are not problems arising in probability
theory, and can be dealt with using only analytical techniques, it turns out that since
many models of interest have a probabilistic interpretation, there is a probabilistic
approach to homogenization. It uses namely results of ergodic theory. In this ar-
ticle, we will restrict ourselves to the probabilistic approach. We refer to our forth-
coming book [4] for details concerning analytical approaches (see also [2], [3]).

Homogenization has been studied by several authors in various fields (Ana-
lysis. Numerical Analysis. Probability theory). Let us mention, in particular, Ba-
buska [1], de Giorgi-Spagnolo [6], Freidlin [7], Spagnolo [10], Stroock-Varadhan
[11], Tartar [13].
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2. Homogenization for diffusions

We will restrict ourselves to diffusions, although the same methodology can be
applied in many other situations.
Let a;;(x), bi(x), ci(x), i,j = 1, ..., n be functions on R such that

"y . aza‘f o (PN 2
.1 @js by ey & CHRY); 8, 0x; L2, Za,,&,fj ># Z i
B>0, V&, ...,EeR,
2.2) aij, by, ¢, are periodic in all variables with period 1.

Let © be an open bounded regular subset of R, whose boundary is denoted
by I, and fe C°(@), a > 0. Let u,(x) be the solution of the Dirichlet problem

#u, 1
-of3) - o)

i dx; €

In (2.3) we have not written the signs of summation. The general convention
which will be used hereafter is that when indices are repeated there must be a sum-
mation over that index (Einstein’s convention).

We are interested in the behaviour of u,(x) as & — 0. We will use the prob-
abilistic interpretation of u,(x), which we now describe.

Let us set 2 = C%([0, c0); R") equipped with the topology of Fréchet space
of uniform convergence on compact subsets of [0, ). Let

x(t,w) = w(t)

be the canonical process and &' = o(x(s), 0 < s <
the Borel o-algebra on .

By changing 4;; into } (a;+a;;) which does not affect the solution u, of (2.3),
we may without loss of generality assume that

ou, ( x ) u,
—_—— oty = f,
@3 0xy 0x;

t). Then #* coincides w1th

2.4 ay = ay.
Let then o be such that
*
@29 1%. = a,

where a is the matrix a;;. Such a factorization exists.
There exists one and only one measure PZ on @ such that x(¢) is the solution
of the Ito equation

dx=~i~-b( )dt—l—c( )dt+a( )dw,(t),
0) = x,

where w,(t) is a standard Wiener process and an %' martingale. Let v be the exit
time of x(¢t) from 0, ie.

(2.6)

7 = inf{s >

0 x(s) ¢ 0};

icm
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then it is well known that the following relation holds true

@7 uy(x) = E2 S e=f(x(t))dt.

Moreover, we can write
§e-f(x(r))at = F(w)
0

which defines a functional on £.
The following result is standard:

(2.8) P; a.s. Fis continuous and bounded.
We can rewrite (2.7) as follows:
2.9) u,(x) = | Flw)dPi(w).

Q

It is clear from (2 9) that the convergence of u,(x) is related to the weak limit
of P¢in the space p} of probablhtles measures on 2 eqmpped with the weak top-
ology

o= o= (@) = (@)
for any ¢ continuous and bounded on Q. If we prove that

(2.10) PZ — P, in the weak topology

and if

(2.11) F(w) is Py a.s. continuous,

then it is well known that (see Gihman—Skorohod [8])

(2.12) U, (x) = u(x) = | F(0)dPx(@).
2

We will prove (2.10) and P, will be a nondegenerate diffusion for which (2.11) is
true, hence (2.12) follows.

3. Some technical results from ergodic theory

Let us consider on an arbitrary probability space the process

dy = b(y)dt+o(»)dw(t),
Y (0) = X,
where w(t) is a standard Wiener process. Such a construction is possible, by virtue
of the regularity assumptions on b, o.
Let IT = (0, 1)" and let IT be the torus obtained. by identifying the opposite
faces of I1. We also can write -

(3.1)

— Rn/Zu

2 Banach Center t. V'
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and I7 is a compact spate. The Borel o-algebra on IT can be 1dent1ﬁed with the sub~
o-algebra of Borel periodic sets of R" (i.e. whose characteristic function is periodic),
by the formula

(3.2 E= U E+ke,
iyerkn€Z
where E is a Borel subset of IT, and E is a petiodic Borel subset of R" (e, ..., e,

are the unit coordinate vectors). Since b and o are periodic, (3.1) defines a process
on the torus and, moreover, a Markov process on the torus.
We can easily compute its transition function. Indeed, if we set

d

32
(33) A= -‘aum—biwgz,

there exists a unique Green functions p(x, ¢, ¥) = R"X [0, 00) X R* - R such that

p(x,t,y) >0, p iscontinuous on {t>0, xeR"y eR"},

G4 pis C*inx, C*in t,
as a function of x, ¢, the function p satisfies
p

(3.5) K2
vx, {p(x, 1, 2)f0)dy > f(x) as 1 = 0,

Now, if 1 is periodic, p(x, ¢, y) is periodic in x. If % e IT, E is a Borel subset of

IT, then we can set
6o PGB = Y (oxty+ Zk,e;)
ki) kn€Z 1

+Ap =0,

Vf continuous and bounded.

p(x t, y)dy

and the right hand side of (3.6) does not depend on the particular choice of the
representative x of Xx. Then P(%, ¢, E)-is the transition probability function of the
Markov process y(z) on the torus.

Since for any ¢ >0, p(x,¢,3) = C > 0 Vx,yeil (the closure of II) and
since . p(x L, y+ Zk,e,) is convergent (x, y fixed, ¢ > 0), then P(%,?, E)

Kty ooy K€

has a density with respect to the Lebesgue measure (which is a probability on I

P(i, t, E) = \pol¥, t, Hdi
E
such that VE €17 of positive Lebesgue measure, and Vi ell, 1 > 0, there exists
8 > 0 such that po(x, t,2) > 8, Vi e E.
This is much more that what is sufficient to insure that y(¢) is a strong ergodic
process on the torus.
By standard ergodic theory we can thus state

icm
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THEOREM 3.1. U};ta'cz assumptions (2.1), (2.2) there exists one and only one in-
variant measure on Il, P such that Nf Borel, periodic and bounded Jfunction on R"
(i.e., f is Borel and bounded on the torus IT) one has

) sup|Ef (1))~ { 7P| I1fllye~,
i
where y, 0 are positive constants depending only on B and the bounds of a i by m

Remark 3.1. If one can solve the adjoint equation

(.8) Am =0, (mmax=1,
where "
@9 2 O, 0%, @)+ Z ax, Ty bt

then it can be shown that P has a density with respect to the Lebesgue measure,
which is m. In particular, if

P/ 2
A= —.3_.76;‘1”?;;’
ie. '
_ aﬂu
b= T
then A* =

A,and m = 1, i.e. P is the Lebesgue measure oan(Sfdf’: § f()dx). m
# iIr

THEOREM 3.2. The assumptions are those of Theorem 3.1. Let p(x) be a Borel
periodic bounded function such that

ie

(3.10)

Then there exists one and only one (up to a constant) solution of

ey TE_p 02
LI PR P
ze WHPHRY),() Vp 2

Proof. Without assuming (3.10), but only that ¢ is L?(R") one can solve for
o >0,

(3.11)
1, p < o0, z periodic.

&z 02y

G412 Oy

oz, =@, ze WHPHRY.

oz %z

——y w——— € LP'# where LM =
ox;  Ox10xy

(*) Sobolev space with ~weights; ze& W>Plasz,

{o RS" |@(x)|"exp—pulxidx < oo}
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There xists one and only one solution of (3.12). This can be proved by using vari-

ational techniques and the iterative scheme
o2 2—&-1 32 N4 1

i gran, U ox

as in Bensoussan—Lions [5]. Details are omitted. Furthermore, z,(x) has a prob-

abilistic representation, namely

(3.13) paziti 4 Azt = deltg,  ztt e WRPHRT)

0

(.14) 2a(x) = E e~ (3(t) ).
0

It is clear that if ¢ is periodic, then z,(x) is periodic. Now, if (3.10) holds true,
then according to (3.7), one has

|Bp (3:(8))| < llgllye™
from which it easily follows that |z,(x)| € C as & — 0. This estimate and the equa-
tion insures that z, remains in a bounded subset of WP "(R") One can then let
a — 0, and obtain a solution of (3.11).
The uniqueness is obtained as follows. Take ¢ = 0; thcn by Ito’s formula,

2(x) = Ez(3:(8)) Vit=
Since z is periodic, it follows from (3.7), letting ¢ — co, that
z2(x) = Szdls;
it

hence z is constant. =

4. Main convergence result

We can now state our main convergence result.
THEOREM 4.1. Under assumptions (2.1), (2.2) and if

@.1) {b(dP(x) = 0,

b4

then P% converges weakly towards the diffusion P with constant coeﬁ‘icwnts r and gq
given by formulas (4.13) below.

Proof. Let us first prove that the family Pg remains in a compact subset of
ub. (for the weak topology) as & — 0. Indeed, let y(y) be the vector function sol-
ution of

42) o

—ay () ke =, TE = 1b(y).

N vy T o
The components x'(y) of x(») are W2 #(R" functions and periodic. This follows
from Theorem 3.2 and (4.1).

Let us set

4.3) z,(t) = x(t)+&x ( x(t) )

icm

. HOMOGENIZATION AND ERGODIC THEORY 21
hence
“4.4)

|z(t, w)—x(t, w)| < Ce Vi, 0.

By Ito’s formula, we have
x
(4.5 z(t) = x+sy (;—) +

1

el el st 2]
+S(1+ ) (xf))dm(HS( ) (x(s))

By the choice of x(y) it follows that

49 200 sva ) o F)of22 o1 o 2o

Since % is periodic and bounded, we have

“.n E;|z(t)—z()1* <

From (4.7) it follows that if Q% denotes the probability measure on £ associated
with z,(t) (which is clearly a continuous process), then Q% remains in a compact
subset of x.. But from (4.7) and (4.3) we also have

Cltz~t,)* YV <1,

E;I sulp |x@)—x(s)|* < 2E,‘§I sup |z.(t)—z:(s) 1> +2C, < 2C"0+2¢C;
t—s|<g 1—s|<e
hence
(4.8) limsupES sup |x(t)—x(s)|* = 0.
-0 [t-s[<eo
o0
Also
(4.9) limsupPS[ sup |x()—x(s)| = d]=0 Vé>0,
=0 [t—s]<g
(g
(4.10)

limsup P2[|x(0)} > ] = 0.
55
But (4.9).and (4.10) insure, applying Parthasarthy [9], that Py remains in a com-~

pact subset of pl.
Let ¢ € 2(R™). By Ito’s formula,
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@1y oG <r))—¢(ze<s))+8 i) -1+ 4 ) (x(”) et

ﬁ%wmﬁ%ﬂﬁﬁﬂ

Hence
!

@.12) E:[q:(x(t))- fura 3;"2’ (x(0)di- | %—‘)—’j— () rd}l[ﬁyl

= p(3())+Ep (x(t))— ¢ (2:())| F*] + 9 (2:(5) )~ 0 (x() )+
+E:[St( 2 ()= 22 (o) 1+ ) a1+ L) (2D)an )+

el ) 2]

+E;l§tr——~-( (z)) (x(’l))dug 9P (x(0)- 7 (x('l))dM.@'"]

where we have set

= S(’*% “(’+ —S—;‘«)*dm,
@13 #

r= §(1 + f«f;) cdP(y)
and
(4.14) 0= (1 + “gff) 4 (’ + %‘") -4,

FO) = (I+ gﬁ—) cO)-r.
Using (4.3) and the fact that @ € 2(R"), we can check that

(4.15)

E: [w (x®)- ‘I’(Zs(’))‘F’P(Zc(")')—‘P (x())+

HOMOGENIZATION AND ERGODIC THEORY 23

+§ ( ? (. aq’((l)))( ) (1+ 5 ) (xf’l))dz+

+S(%',’%(Za<@)"¢ (X(l))> ( _gg) ( ())dalgzs]

We are going to prove that

E“[Str &y (x(z))q("(’l))dns %9 (x(1)).F (x(l))dmsr’]

Assuming for a while that (4.16) holds true and using (4.15), it follows from
(4.12) that any measure P, which is a weak limit of some subsequence of Pg, will
satisfy

Ce.

(4.16) <.

@.17)  E, [(p(x(t)) Strq = (x(») dA— S o9 =)- rdllﬁ’] @ (x(s))

Vs < t; Yo e (R,
But by the theory of Stroock—Varadhan [12], there exists one and only one prob-
ability measure P, on @ satisfying (4.17) and such that
, Pu[x(0) = x] = 1.
Hence the whole sequence P? converges towards P, and the proof of the theorem
will be complete, provided we prove (4.16).
To prove (4.16), let y(x, ) be the solution of

e . %
LT aylayj —b, e (x) (y)+tr (x)q(y)

For fixed x, (4.18) is an equation of the type (3.11) since r(y) and 4(y) have 0 mean

with respect to the invariant measure P. Hence as a function of y, y(x, ¥) e W2 P/#(R")
and is periodic. Clearly from the equation x(x, y) is smooth in x. From Ito’s for-
mula, one has

(4.19) Eg [y(x(t),fgl)— L

*S( ( (/D,x(z)) 1 9y ( (ﬂ)’x(l))) ( (x(A)) L (x(/l)))

] 2 B
ol )2 2 o )

( ), xa))dllf’] = y(x(s), xi—s))

2

(4.18)
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gy o9y %y %y

Tx’ Jy’ Ox,0x; Ox,0%;

easily checks (4.16). The proof of the theorem is now complete. m
Remark 4.1. The matrix a;; is positive definite. Indeed,

Using (4.18) and the fact that y, , are bounded, one

i

W'\ = d 0 =
quy = S(éud' —2—}%) A (5u+ %’T)dl)(y) = Sakl—-a};—(h"l"li)"a‘;()’j"'%j)dp(yy
bi it

Hence if &, ..., &, are reals, one has

g -
Al Sakl"'a% (51()’!"‘%1)) “a}’l" (EJ(J’]*'XJ))dP
it

J 2.
>$ Z S (—«—a Eout x‘))) dP(y).
7 2\ Ok
bi¢
At least, in the case when P has a density with respect to the Lebesgue measure,
then g,;&;&; = 0 implies
fl(}’ri'xi(y)) = C.

Since y' is bounded, such an equality is impossible when one of the & is non 0.
The existence of this density follows from Remark 3.1 and Fredholm’s alterna-
tive applied to the operator

A== g, 2L ~>:b 9
i

e —_
4 Y o, 0x; U ox,

According to Theorem 3.2, there is one and only one periodic solution in, say, W#2:#

(up to a constant) of
Az = 0.

This solution is obviously z = 1. One can also consider the operator 4 in the sub-
space of H'(II) defined by the periodic functions (rewriting

O\ 9 8 Z z day\ @
4= ‘Z"a?cr("‘f ax,)* [ x| o
f) i J
and using variational formulation). It is well known then that the Fredholm’s alterna-
tive applies. Therefore the equation
A*m = 0

has one and only one ‘solution which is periodic (up to a constant), The constant
is fixed by the condition §mdx = 1.
J g
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