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§ 1. Introduction -

In [8] we introduced a non-linear semi-group attached to the Bellman principle
of stochastic optimal controls in the following way: Let I" be a o-compact subset
of R, called a control region. Let 2 = (2, F, F,, P) be a probability space and B
an n-dimensional F,-Wiener Martingale. Let U be a I-valued F,-progressively mea-
surable bounded process. We call U an admissible control, or, to be more precise,
the triple 4 = (2, B, U) is called an admissible system. By U we denote the set
of all admissible systems. For 4 = (2, B, U) we consider the following n-dimen-
sional stochastic differential equation:

(L.1) dxX(®) = a(X(t), U@))dB{t)+y (X(t), Ut))dt,

where a(x,u) is a symmetric and non-negative definite nxn-matrix valued Borel
function on R" xI" and y(x, 1) a R"-valued Borel function. We introduce the follow-
ing conditions of boundedness and continuity:

1.2) ' |Fx, )| < b,
(1.3) [F(x,)—F(y,u)| < plx—yl, Vuel,

where u is a positive constant. Applying the usual successive approximation, we
can easily see that (1.1) has a unique solution X, which is called the response for 4.
The problem is to maximize the mean of the following gain:

s t
P fe(x), U)o — §e(X(0). U@) do
(1.4) V(t,x,A,p) = EX[S e 0 X, U@))ds+e © zp(X(t))],
0

where ¢ and f satisfy (1.2) and (1.3), c is non-negative and X is the response for 4
with X(0) = x. Put

1.5) Vi, x,¢) = sugV(t, X, 4,9).
A€

[175)
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The Bellman principle gives us the following two-stage optimization:

5 —?C(X ) ";C(X u)
.6 v, x,<p)=Asqu‘)Ex[Se 0 (X @), UO) ) dbe O V-5, X(s), 9)].
€ [

Hence, denoting V(¢, x, ) by Q;¢(x), we have
Q:p(x) = QS(Qt—_ﬂP) ()5
namely, the Bellman principle is nothing but the semi-group property of the op-
erator Q;. We give a precise definition of the operator Q; and the following theorem,
Theorem 1, is proved in § 3.
Let C be a Banach lattice of all bounded and uniformly continuous functions

on R". Define Q, by.
1) - §°(X

F(X(®), U(s))ds+e © peC,

P )
17D Go®x) =j\:§Exl§e 0 w(X(t))]’

where X is the response starting-at X(0) = x. Then we have

THEOREM 1. Let a, y,c and f satisfy (1.2) and (1.3) and-.c = 0. Then ' Q, is a
strongly continuous non-linear semi-group on C- which is monotone and contractive.
Moreover, the generator G of Q,-is expressed by

(1.8) Goplx) = nsupL"tp(x) +f(x,u4) for o€ Cz,‘
where - '
19) L'p(x) = ';* p o, ) s — 6 8 )+ V i, u)— ()~ c(x, ) p(x)
and = ]
C2={¢EC;% and aﬁ:;pxjéc’ ij= 1,...,n}.

The right side of (1.8) can be found in the Bellman equation [1], [4], [5]. -

In § 4 we shall review a similar problem in a more general set-up [9], [10], i.e.
our general problem is the following: Let P¥, ¢ > 0, be a positive and contractive
linear semi-group on C with generator 4*. We seek a semi-group acting on C whose
generator is an extension of Gp = suB(A“qp +£*). Such a semi-group will be obtained

ue

as the envelope of the semi-groups T, u e I"

t
(1.10) T'p = Plo+ Pifido
0
whose generators are
(L.11) G'o = A'p+f*, uel,

as we can infer from the fact that G is the envelope of G, u & I". We have Theorem
2, [10].
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- THEOREM 2. Suppose that the following conditions, (A1)-(A4), hold:

(A1) If @, € C is an increasing sequence tending to g € C at each point, then P,
increases and tends to P{ o at each point for any ue I" and t > 0.

(A2) Let D(A") be the domain of the genérator 4",

DAY > C?, wuel
and
(1.12) sup[|ld“pll < 0 for gecC2
u

(A3) With a positive constant h,

(1.13) sup|if*ll<h  and  sup|f'(x)=f"()| < Alx—yl.
u u

(A4) For any positive T there exists a constant g = q(T) such that

(1.14) sup [Prp(x)—Pip())| < e|x~y| Vi< T
u

whenever [p(x)~ ()| < |x—y| and |lgl| < 1
Then there exists a unique strongly continuous monotone and contractive semi-
group S; on C which satisfies the following three conditions:

(i) Foranyt> Oanduel

1

(1.15) Pio+\ P < Sip.
0

(i) The weak generator G,, of S; is expressed by

(1.16) G, = sup(d*p+f*) for. peCx
u

(iii) If 5: is a strongly continuous monotone ‘and contractive semi-group on C with
(i), then

.17 5S¢ < Sig;
namely, S; is the envelope of semi-groups T}, u e I'.

Let A" be the second order elliptic operator L* expressed by (1.9). Then we have
the following theorem [10]:

THEOREM 3. Suppose that I"'is a convex o-compact subset of R* and the coef-
ficients of L", a, y, ¢ and f;, satisfy (1.2) and (1.18).

(1.18) [F(x, w)—F(y,v)| <

where g is a concave and strictly increasing continuous function on [0, c0) with 0(0) =
0. Then the linear semi-group P} satisfies conditions (A1)-(A4) and the two semi-groups
Q: and S, coincide.

In § 5 we deal with the optimal stopping problem and an excessive majorant.
This is a generalization of the optimal stopping problem of Markov processes
[ref. [2]); namely, we can control not only the stopping time of the motion but

wlx—y|+e(u—2l),

12 Banach Center t. V
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also the motion itself. For the stochastic motion described by the stochastic differ-
ential equation (1.1) this problem has been considered in [4], [6] and [8]. We review
the following theorem, Theorem 4, [8].

For an admissible system A = (2, B, U) a [0, w0]-valued random variable 7

on @ is called 4-stopping time if
{w; T(w) < t} EBLJ 6o(B, U) = 0,,(8, U),
>t

where o (£) is the o-algebra spanned by {£(x), s <
set of all A-stopping times. We assume (1.19)

t=0,

6}. By 7 (4) we denote the

(1.19) infe(x, u) > 0.
Define o(x) by -
§c(X v) —Ec(X 9]
(120) o) =swp swp . S S ydere ¢ p(x()

where X is the response for 4 with X(0) = x. .

THEOREM 4. Under the conditions of Theorem 1 and (1.19), v € C and v is the
least Q-excessive majorant of ¢, i.e.
(1.21) ov<o
(1.22) p<y;
moreover, if § € C satisfies (1.21) and (1.22), then v < 0.

In the general problem we can prove Theorem 5.

THEOREM 5. Suppose that (A1)-(A4) are satisfied and assume

(A5) There exists a positive ¢ such that

1PY]] < e~ Oanduel.

Let g be a bounded and Lipschitz continuous function. Then there exists a unique least
S-excessive majorant of g.

Vt> 0,

Sforany t >

Although the method of construction of an excessive majorant is analytic, we
will discuss an example of a probabilistic method in § 6 according to [6], [13].

§ 2. Preliminaries

Let C be the set of all bounded and uniformly continuous functions on R”.

C becomes a Banach lattice by the usual norm and partial order, [12], i.e.

[lgl] = sup lp(x)| and “p < ¢” is defined by “p(x) < p(x) Vx”. When ¢, &C
XeR®

is increasing to ¢ € C at each point, we say that ¢ = 0,—limg,. If a subset {g,}
of C is uniformly bounded and equi-uniformly continuous, then supg, and infe,
exist in C. Hence for any positive constant M and positive function & on (0, o),
the set Hy,, 5 defined by

Hy,s = {peC; llgll < M, lp(x)~p0)| < & for [x—y| < 8(e)}

icm

ON A NON-LINEAR SEMI-GROUP 179

is a complete lattice. But C is not complete as a lattice. According to the defi-
nitions of supg, and infy,, the following inequalities are clear:

@10 inf(gy—4.) < supg,—supy, < sup(pe—v.),
(2 lsup g~ supy,. || < sup|lgu—pall.

For §(6) = 6/K, where K is a positive constant, we denote Hy,s by Zpx and
Zx. x by Zk.

ProrosiTioN 1. Suppose (Al)-(A5) hold. For any geZ‘ and 1 € [0, w0) we
define T, = T/ by )

t

@3 Top = e*Plg+ e PY(f*+28) b,
0

peC.

Then T is a monotone contractive and -strongly continuous semigroup on C, whose
generator G is given by )

249 Gy = A"p—ip+2g+f*

and D(4*) = D(G). Moreover, the following evaluations hold for p € Zx and t < T:

2.5) 1T p(x)-T:9(0)] < |x—y (e*"K+%(e‘"— l)+p+qte“p),

where ¢ = q(T) and

(2.6)

Tl < —(a—emoson LR 1 _o-aran

e+ g + oo

e‘“ll¢l!+7(1~e"“)+llgll- ,
We only show (2.5).
@7 Lp()~Tp) = e™*(Pio()-Po))+ e (PiS*()—Pif* )b +
0

t

4§ e (Pyg()—Pig()) do.
o

By virtue of (A4) we have the following evaluations:

[1st term| < e"™K|x—y|,

t
|2nd term| < hS |x—y|e®df = hjx—yl|(e*—1)/q
0

and ;
13rd term| < Ap|x—yl(e@P*~1)/g—A.
Using the inequality “(I—e~*)/x < ¢ for x > 0 and ¢ = 07, we get
(a-ht ‘
R it ) I < e®@M)r g et for <i<g

q—2


GUEST


180 M. NISIO

and

l(e(q__Z)t__ 1) ) ] — e~ @G-t

P B e

s

A—q
< l4gt< 14gte™  for g< A
Combining 'these evaluations with (2.7) we have (2.5).
COROLLARY. For any @ e C and T > O there exists a positive function §* =
*(p, T, &) on (0, ) and a constant M such that
2.8) Ti9ge€Hy,spm, t<T,uel,1z0.
Moreover, for the set Hy, 5 there exist a constant M and a positive function & such
that
2.9) TipeHy, t<1,peHys uel, 1€[0,00).

Proof. Since 2 = |J Z is strongly dense in C, there exists an approximation
K>0

w of ¢ in 2. Hence we have
(210) |Tp()—Tip0)| < |Tip(x) = Tip () [+ Tep()— Teyp0) |+ Tp() — T ()]
< eyl + Ty~ Tip()|.

Applying the evaluation of (2.5) and (2.6) to the last term of (2.10), we can find
out the required function §* and the constant M of (2.8).

To prove the second part we remark that for ¢ > 0 there exists a positive X
such that for any ¢ € Hy, s We can take an e-approximation y in T, i.e. |lp—p|| <
&. Using the same calculation as (2.10), we have (2.9).

PROPOSITION 2. Let ¢, € C be an increasing sequence. Suppose that 0,—limg,
and 0;—limsup T, exist. Then
n u

@11 sup T7%(0,— lim ) = Oi—limsup TMg,.
. uA n n uA
Proof. Put ¢ = 0,~limg, and J(y) = sup T/*y. Since J is monotone; we have
ud

J(pn) < J(@ur 1) < J(p).
Hence

(2.12) : 0;~limJ(g,) < J(p).
Recalling (A1), we can see that

@2.13) T = (0~ imP!p,)+ | e Py(f*+ Ag)db
[}
t

= 0,—lim (e-"'P,“ ot § e PI( 4 2g) dﬂ)
0

= 0,~limT}%g, < 0,—limJ(p,) Vu, 1.

Taking the supremum w.r. to (u, 4), we get the opposite inequality to (2.12). This
completes the proof of Proposition 2.
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§ 3. Proof of Theorem 1

We proved Theorem 1 under the stronger conditions in [8]. Thus Theorem 1
is here a little improved. We can apply the same method as in [8], although a little
modification is required in order to get the semi-group property of Q,.

Let X and Y be the responses for 4 starting at x and y, respectively. Then the
following inequalities hold:

ER)) EX@®)? < K (t+1%)+1x],
(32 EIX()-Y()|* < |x—y|2e*,
(3.3) ElX(t)~X() > < K3(jt—s|+]t—s1D),

where K; stands for a constant independent of: the admissible system, starting point
and time ¢. Hence for & > 0 there exists a positive = §(T, ¢) such that

(€] 1Q:¢ ()~ QoM < i‘i%[E"I(t’ A, )—EI(t,4,9)] <¢
whenever [x—y| < d and ¢ < T, where

! ——§c(X(0)U(6))d0 —gn(X(o)U(e;)do

B3 It 4,9 =e? f(X)UGs))ds+e © . e(X®).
0

Moreover, we have

(3.6) 10:9ll < il +b2.

B  10:p(x)—Qsp(x)| < i‘;l;]ExI(’, A, 9)—EI(s, 4, 9)|

< blt—s|+ligllblt—s|+supE; o (X®)—¢ (X))

By-(3.3) this evaluation (3.7) proves the strong continuity of Q,¢ w.I. to f.
Using the following fact (3.8):

(3.8) l1(t, 4, 9)—1t, 4, )| < llg—ll,

we can see that-

10:p(x)—Qip()| < 'SEIJIExI(t, 4, 9)—E:I0, 4, p)| < llp—vll;

namely, O, is contractive.
(3.9) Iit,A,9) < I(t, 4,y) whenever @< yp.
Therefore Q,¢ < Q,y; namely, Q, is monotone. .
In order to prove the semi-group property, we shall note the following lemma.
LeMMA. If two admissible systems, A = (2, B,U) and A= (2, B, ~U), satisfy
the condition “U(t, ) = U(t, w) Y(t,w)”, then their responses X and X coincide
whenever X(0) = X(0) = x, i.e. “X(t, ) = X(t, w) Vt” with probability 1. .
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Proof. Put Q = (2, F, F, P). Since X, X, U and U are F-adapted processes
and B is an F-Wiener Martingale, we have
/

E[} 4y (X9, UG)) dBy(6) — § o4y (X6, U)) Byt
(1} 0

t
= E{ o, (X, U($))~ oy (X(s), T(s))[2ds = 0.
0
Hence with probability 1

§ a(x(5), U))dB@) = {a(X(s), T))dBs) V1.
[1] 0
Therefore with probability 1
X@) = § a(X(0), T©)dB)+ { y (X, U))ds vt
o [

This means that X is the response for 4. Thus we complete the proof of the lemma.
Put W = C([0, c0) -» R") X L}2[0, c0). Then W is a complete separable metric

space with the metric p,
o(f, 8) = Z 2™

where Ilhlln=01:xglh1(t)l+(§ [h(O)[2dt)""* for k= (h,h;). By the lemma

(B, U) can be regarded as a W-valued random variable. Let F, be the o-algebra
spanned by coordinate w(0),0 < s, and F= V¥ F,. Let » denote the probability

§>0
law of (B, U) on W. For almost all £ e C([0, 5] > R") X L2[0, 5], there exists a re-
gular conditional probability »(-, &) on F which gives a nice version of the con-
ditional probability »( - /F;), [11]. On the regular probability space (W, F,»(+, 9),
the system after s {dB(8), U(6), 6 > s} is again an admissible system if we takc s as
the origin of time. Moreover, X(6), 6 > s, is the response starting at X(s). Hence,
recalling the definition of gain ¥, we have

_f—glls
T+{I7=ells’

o t
t —fetx, .
(.10 ,§,[Se - U)f(X(G), U®))do+e Jow o

s

o (X0))] v, &)
. = V(t—s, X(s), 4% 9)
with some admissible system 4¢. Thus we can see the following

Lea. Qrisp < Qs(Q:9).

Proof. By virtue of (3.10) we have
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s [ . s . ¢
- {ex, 1) —{etx, 1) ~{ex,U)
Edt, 4,9 =E|le ¢ fxmydi+e ©  E(fe: Ax, U)o+
. 0 s

—-§C(X Uy
te t  p(XO)E) < Ed(s, 4,0 9).

Taking the supremum w.r. to 4, we obtain the lemma.
In order to obtain the semi-group property we shall derive the inverse in-

equality. In view of (3.4) there exists for £ > 0 a positive § such that

(3.11) lpx)-p()| <& for |x—yl <4
and
(3.12)  |EI(t, A, 9)—E,I(t,4,p)| <& for |x—y <6 Vdel

We apply a measurable partition {4,,i=1,2,...} of R* such that dia(4)) < ¢
and any compact subset of R" can be covered by finitely many 4;. Fix x; € 4y ar-
bitrarily and take an e-optimal system Ay = (&, By, Uy), ie.
(3.13) E I, Ak, ) = Qip(xi)—e, k=1,2,..
From (3.11) and (3.12) we can see that
G4 BIF, Ax 9) > Ex It As, )6 > > 0ip()-3¢

for yed;;
namely, Ay is 3e-optimal system for y € 4. Fix 4, € U arbitratrily and take a com-
pact set 4 such that

Q. p(x)—2e >

(3.15) P (Xo(s)eA) > 1-5.
Define 4 = (2, B, U) as follows:
0 = Q,x2, % ... (product probability space),
Uo(®), 6 <s,
Ue) =1 &
@ Z Uk(e"s)XAg(Xo(s))‘*' Uy 1(0—5) 240 (Xo(s)), 6>s,
=
dB,(0), 6<s,
dB(f) = 1 &
@ Z_ dBy(0—5) %4 (Xu(s))‘l'dBNn(o—'S)Zm (X(s)), 0=,
=1

N
where 4 <« U 4, 4* =
k=1

is an admissible system and its response X is written by

-]
U 44 and yx, is the indicator function of A. Then A
k=N+1

Xo(6), 0 <s,
— N -
KO = 1 S 0 2 (Ka(9) + X 0= (o), B3 5,
k=1
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where X; is the response for A, starting at X,(s). Moreover, 4 is nearly optimal
after s and we have .
09> Bl 4, 0) >
Since 4, and ¢ are arbitrary, we have
g 2 05(Q:-59).

This implies the semi-group property of 0O, by virtue of the lemma.
Now we shall calculate the generator G of Q,. For 4 e and p e C? Ttos
formula gives

E I(s, Ao, Qi—sp)— Ky 6.

5

L e A')
E"S et
0

)LU(‘?rp (X(®)) ds.

~§c<x v)
Ee ?  g(X())-9() =

Hence we have

U)
(.16)  Qip(x)— p(x) = st;pExS e O (LY9p(X() +/(X(s), UW))-
0

On the other hand,
t

supE S(L“”q)(x) +f(x, Ul (s) )) ds < E, S sup (L'p(x)+f(x, u)) ds
pu

t

@3.17 = sup (L'p(x)+f(x, ) )t = sup S (L'p(x)+f(x, w))ds
uel uel'g

< supk, § (7o) +1(x, Us))) ds.
0

Hence the inequalities in (3.17) turn into equalities. By virtue of (3 3) we can obtain
(1.8) from (3.16) and (3.17).

§ 4. Envelope of Markovian semi-groups

This section is a review of [10]. In order to construct the envelope of semi-groups

¢, uel, it is convenient that the basic space where T acts should be a com-
plete lattice endowed with the supremum norm, [9]. Since C is not complete as
a lattice, condition (A4) is required. We sketch an outline of the constructlon of §;.
Define J = J(N) by

@1 Jp=supTivg, gelX (= Ip ).
u >0

Then J is a mapping from X into Z by (2.5) and (2.6). So we can define J* success-
ively, i.e.
4.2)

Jk+1(P = J(qu?), @ E 2

icm
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Define an approximate envelope S& by
4.3) S®p = J*(N)p for t=k2", peZ.
From conditions (Al)-(A4) and Probosition 1 we can see the following lemma:
Lemma 1. For binary time t = k2~% and ¢ € X, S™ has the following proper-
ties:
©) She = ST g) = SP(Sg),
@) S™Mep < S™y whenever p < y,
(i) (ISP p—SMyll < llp—vll,
(i) (IS p—Sioll < [1—bl(sup||d“p||+supl|f*]) for pe C?,

(V) T'p < 8¢ for uel,
™) S = 0,~lmSHgp, when ¢ = 0,~limgp, and ¢, e Zx,n=1,2 ...,
n n

) 15096950 p0)] < le—slew (4 o) pesgisT,
vid) IS @]l < K+ht for g e Zx.
By definition S™ ¢ is increasing as N — co, i.e.
(4.4) SMeo< S0y for t=k2Y, peX.
Moreover, (vi) and (vii) imply the existence of 0,—11'}1{!1;5’,‘”’:;: in X for binary ¢. Deﬁe

(4.5) Sip = 0,—1imS™¢ for binary fand p e X.
N

Then S, has properties (i)—(vii) and we can extend S, in the following way:

(4.6) Sip = limS,¢ for t>0,¢9eC,
l-+00 ..
where # is a binary approximation to 7 and ¢; € X' is an approximation to ¢. Thus
we can see from Lemma 1 that S; maps X into X and is a monotone ¢ontractive
and strongly continuous operator on C.
Lemma 2. S;, 90 = S,(Seq) for any t, 0 and g € C.

Proof. Fort = i2~' and 6 = j2~' we have from (0) and (i)

4.7 S = SV(SMe) < SM(Sie) < Se(Sep), @eC: N= L
On the other hand,

4.8 So(S:¢). = 0,—lim S{M(S, ¢),

4.9) Sepop = 0;~limSFe.

Hence by (4.7) and (4.9) we get

(4.10) Ser09 < So(S:9)-

Moreover, for I < n < N we have

@.11) SIP(S™p) < SO = SEp < Sored
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and from (v), (vi) and (vii) of Lemma 1 we see that
“.12) SO(S,p) = Oi—li]t'nSé"’(S,‘N’qJ).

Therefore by (4.8) and (4.11) we have
4.13) Se(Se9) < So4195

namely, Lemma 2 holds for ¢ € C? and binary ¢ and 6. Since S, is contractive on C
and continuous in ¢, we complete the proof.

We shall calculate the weak generator G,, of S;. We denote S; by A, when f* = 0
for any u. Put A = 2~V and Adg = sup(d*p+sf*). For ¢ € C? we have Ap € C and

4

S§0 - = sup(Tip~p) = sup| Pi(A*p-+1")db
u u 9
4 a4

< sup | Pi(dg)dd < | Ao(dp)db.
“ 0 [

Moreover, we get

k+1)4
4.14) SPnap—-SPp < | dodpds.
k4
Taking the summation w.r. to k, we have
P t
4.15) S®p—g < dsdpdy for t=j2-N.
0
As N tends to oo, we have
t
(4.16) Sig—p< S AgApdd for ¢ e C? and binary ¢.

0
Since both sides of (4.16) are continuous in t, (4.16) holds for any ¢. Consequently

4.17) E}% (Sep(x)— () < Ap(x) for any x.
On the other hand, using the inequality
'%(wa— P2 %(T#qv—w) Vu,
we get
@19 n L (S.p(9-p) > lim - (T p() = A+, wel
Therefore
@.19) lm T (S:p(-p()) > Ap().

By (4.17) and (4.18) we have (1.16).
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The proof of (iii) is easy. Put 4 = 2-¥. Then
Tip< Syp  for any u,
Taking the supremum w.r. to u, we have

SPep < Sap.

Hence

(4.20) SMe < Sp for t= k2N,

This implies )

4.21) S:p < S;p  for binary t. (

Since both sides of (4.21) are continuous in #, we infer (1.17). This completes the
proof of Theorem 2.

We sketch the proof of Theorem 3. Let 1P be the transition operator of dif-
fusion whose generator is L*. Recalling conditions (1.2) and (1.18), we can easily
see that P maps C into C and (Al), (A2) and (A4) hold by virtue of (3.2). Hence
there exist two semi-groups, O, and S,. From (iii) of Theorem 2 we see that

4.22) Sip < Qv
We shall show the converse to (4.22) under the conditions of Theorem 3. Define
Ay by

(423) Uy = {4 = (@,B,V)e¥; V@) = UG2™, te k2", (k+ 12N}

Then we have the following approximation lemma:

o0t '
Lemma. For any A €W there exists an Aye \J Wy such that V{(t, x, Ax, ¢)
Nt

converges to V(t, x, A, ) at each t, x and ¢.
t

Proof. Put W(t) = 2* S . U(s)ds, where U(s) = U(0) for s < 0, and Wy, (1)
-2~
= Wi(2~'[2't]) where [ -] is the integer part. Then we can see that

T

lim lim E{ | Wi ()= U@ 2t =0 VT >0,
kto it ¢

and for a suitable subsequence (k,,7,),p = 1,2 ... the required U, is defined by
U, = Wi,1,- Put Py(t,x, ¢) = sup V(t, x, 4, ¢). Then the lemma tells us
Ac¥y

(4'24) leP(x) = V(tx Xy ¢) = 2}??0 VN(t’ X, (P)'
For 4 € Up we have

= E,T]®(X(0)) < S (x) < S4900),
where 4 = 2-¥, Furthermore
(4.26) Vkd, x, 4, 9) < Suap(®), AUy
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namely,

4.27) Vi@, x,9) < Sip(x) for ¢=k27V,
From (4.24) and (4.27) we see that

(4.28) 0:9p(x) < S;@(x) for binary ¢.

Since both sides are continuous in ¢, we obtain the converse to (4.22).

§ 5. Optimal stopping and excessive majorant

First we review the proof of Theorem 4. By routine we see that
(5.1) EX(xA)-Y(r A < [x—y2e?%,  4eW, veT(4),

where X and Y are the responses for 4 starting at x and y, respectively. Hence v
is in C. We reduce the optimal stopping problem to the control problem without
stopping by virtue of the randomized stopping [4], [6]. The method is the follow-
ing: Put y,,1(0) = nyre_yn, n(6). Then for any fixed i we have

< —?c(X. U)+yn, 1 «° —?c(x,v)w..,:
62 fe S, Uyds+ § e ©
0

0

P, 1(8)0(X(s)) ds

! —fc(x,v) ° —fn(x,m ,—fc(x, 1)
Sle o T mdsret (e O AX Uydst (1—e e O v (X(H))
) t
as n— 0. Asi tends to oo, the right side of (5.2) becomes I(¢, 4,v). By #(A)
we denote the set of all bounded processes y such that y(¢) is ¢,-(B, U)-measurable.
Appealing to (5.2), we can see that

L

6y o e 07 (i, 0y @e(x)d

. o(x) = sup sup E, \e , .

Asg ysR?A) 0 (f( )+7( )7)( (t))) ‘
Therefore o
(5.4) . Qu<u,
ie v is Qr-excessive. On the other hand, “p < v” is clear from the definition of .
Let & be a Q-excessive majorant of £. Then the process £ defined by

s
- fe(x,
0

! 7)) ~§c(X, v _
(5.5) E0)=\e JX, Uyds+e X))
0

is 0:, (B, U)-super martingale. Hence we have
(5.6) E.£(7) < 9(x) forany v e J(4).
By virtue of “p < 9” we have

&) I, 4,9) < Q).
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Thus
(5.8) ' EX(t,4,9) < E(() < 9(x), Ae¥,1eT(4).

This derives “o < ¢” and completes the proof of Theorem 4.

We shall prove Theorem 5. In order to construct the least S-excessive ma-
jorant, we apply a similar method to that used in [9]; namely, we use the randomized
stopping. Take I'x [0, o0) as the new control region and define J = J(N) by

(5.9) Jp = supTockp, @eC,
ul

where T7% is defined by (2.3). From Corollary in § 2 we can see that J maps C
into C. Hence we can define J, k = 1,2 ... successively by J*+1p = J(J%p).

LemMaA 1. Putting A = 27V, we have
JO) T = JHI'g) = Jh), Kk I=1,2,..
) T < J*y whenever ¢ < y;
(2) o= JT*ll < e *lp—yll;

h
V3 %Il < e—,CkAH(P]['F‘—c‘(l—e_m')ﬂlg]l; .
4  J*p = 0,—limJ*p,, k=1, ...,] when ¢ = 0,—limg, and 0,—limJ*¢,,
n

k=1,..,1 exist;
5 g<Jp;

h
6 rpx)—Te()| < Ix—yle™ [K+ 7 (1—e %)+ p(gkd +6“’"")]
for kA < T and ¢ € Xx where q = q(T).
Hereafter, the time parameter stands for positive binary number until the end
of Lemma 4. We define "¢ by
(5.10) Py = J¥(N)p for t=k2MandpeC.
Then we have the following lemma:
LEMMA 2.
- (i) For'T and @ e C there exist M and 6* such that Sp € Hy, s for any t
=k2NgT,N=1,2, ..
(i) ¥ is increasing as N 7 co.
(iii) For fixed N, $™¢ is increasing as t /' co, whenever ¢ < g.
Proof. The first part is nothing but (2.8), since Hy, ; is a complete lattice. Put
4 = 2=@®+1_ Then
S5y = sup Tiifp = supT¥(Tig)
uk A

< sup T (J(N+ D) = PN+ Do = S8+ 9.
ui
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Suppose FEup < N5 p. Then
FRianap = FENSu) < FENIKEVp

This means the second part of the lemma.
For the third part we have by (J5)

< FEFNED) = S D

p<g< Jp.
Hence from (J1) we can see that
<Jpg JPp< ..

This completes the proof of Lemma 2.
By Lemma 2 we can define % ¢ by

(5.11) 1@ = 0,~lim# Mg  for binary t and ¢ € C.
n .

Then &; has the following properties:
(1) Frp < &, whenever ¢ < y;
(&) 1%y~ ol < e“'Htp =yl

. N i
(&3 1Z9l] < - (1= D+lgll < ||sv!|+~—-+llgll = M;
(&4 Sf’,q: = 0‘—11m9,¢n when ¥n € Hyp5,n=1,2..

&5) -7:+0‘F (S o) =
(#6) £ < Sro.
We prove (#4) and (&5) since the other properties are clear from Lemma 1.

(&4). Put t = i2~", By Corollary in § 2 we have a constant M and a positive
function § such that

““'Hsvll+
.and ¢ = 0;,—limg,;
,579(.9,(]9),

(5.12) PN, e Hi 5, n=1,2..., N=1,I+1,.

Since &M, is increasing as n — oo, 0,—11m.?‘"’tp,, exists in Hg 3. On the other
hand,

(5.13) Son€Hay, n=1,2..

by the definition of &, . Recalling (1), we can see that 0,—lim¥, g, exists in Hy 5.
Thus by virtue of (J4) we have

(5.14)

Mg = 0,~limF®g, < .
n

0;—lim %, <
As N tends to oo, we get '
(5.15)
This proves (¥4).

(#5). From (J1) and the definition of &, we have

(-16) Sy = FM(FPP) < FI(Lo) <

19 < 0i~lim&P;p, < Seop.
n

F(S o).

icm
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As N tends to oo, we have

.17 Ftr09 € Fo(SLop).
On the other hand, for k < N, we have

(5.18) S Pp) < FP (P =
As N tends to oo, we have

(5.19) LS PP) < Serop.

Since &P is increasing to ¥, as ko0 and by Lemma 2 $Pp & Hy, 50 for

Fhe < FLrro®p-

- large k, (¥4) implies

(5.20) (L op) = 0,——11m F(LPy).
Combining (5.20) with (5.19), we have
(5.21) LS s9) < Lrr09;
namely, (5.17) and (5.21) complete the proof of (&5).

LeMMA 3. There exists a positive function & on (0, co) such that
(5.22)
Moreover, if p < g, then 0;— ‘1;12 @ exists.

FrpeHy5  for any positive binary t.

Proof. From Lemma 2 we can take a positive function 87, so that
(5.23) SroeHgr “for t<gT,
where M is given in (%3). By (5°2) and (¥°3)
(524 |Fer09—Z20ll = [|F:(Lop) - F2oll < | Fog— gl < 2Me™™.
Hence, for ¢ > 0 there exists a large binary T = T'(¢) such that
(5.25) |Frop—F1opll <efd for t>=Tand >0
Thus for [x—y| < 6"(¢/2) we have
(526) |Fr+00(x)— L1000
€ 2P 7409 — 1ol +1F ()~ Lre0)| < 22+e2=¢ VO=0.
Therefore, putting §(s) = 87®(c/2), we see that
(5.27) [Fip(x)-F1e()| <& for
This means that &, ¢ € Hy, 7 for any ¢ > 0.
By Lemma 2 the second part is clear, This completes the proof.
We denote 0;,—lim&,p by v, when ¢ < g. From (5°6) we have
(5.28) ‘
For simplicity we put v = v, if no confusion arises.
LEMMA 4. v is & -invariant, i.e.
(5.29) Fw=0

t>0and [x—y| < 3(&).

g < Yy

Jor positive binary t.
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Proof. By the definition of v and Lemma 3 we see that-
S0 = Y,(Oi—li;n&"a@) = Oi—lignﬁ"t(.?oq:) = 0,——Ii;n.9’,+,,q9 = o.

For the proof of Theorem 5, we show that v, is the least S-excessive majorant
of g by the following two propositions:

PROPOSITION 3. v is an Sy-excessive majorant of g, i.e.
(5.30) Sso<v for t20andg<vw.

Proof. From the definitions of &; and S, we see that
(5.31) Sip < P for positive binary t and g € C.
Hence by Lemma 4 we have
(5.32) S < ¥ =o for positive binary f.
Since S, is continuous in t, S;v € © for any ¢ > 0. This proves Proposition 3.

PROPOSITION 4, For any ¢ < g, v, is the least Sy-excessive majorant of g.

Proof- Let V be an Sy-excessive majorant of g. Recalling the definitions of
T8 and T, we have
t

(5.33) THog = e *Top+ A\ e ¥Tigd) for @eC.
0 .

Since V is S;-excessive, we get
(5.34) 'V SV<V.
Thus from (5.33) and (5.34) we can see that

. ‘
(5.35) THY < eV 4+ e P Tigdy.
Recalling “g < V7, we have ’
(5.36) Tig< V<V
by virt_ue of (5.34). Combining (5.36) with (5.35), we have
(5.37) TV < eV (l—e ™V =V Vul.
Taking the supremum w.r. to « and 4, (5.37) turns into
(5.38) JN)V = sup T4V < V.

u
Since J(N) is monotone, we obtain (5.39) from (5.38):
(5.39) NV LS TNV € . <INV SV,
namely,

IOV KV for t=k2Y¥, N=1,2..
As N tends to oo, we have

(5.40) & V<V for binary t.-
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Recalling “p < g < V™, we can see from (5.40) that
(5.41) Fro< FVLV.
As ¢ tends to co, we have
7, < V.
This completes the proof of Proposition 4.
Since the least S;-excessive majorant is unique, v, does not depend on ¢. In

usual optimal stopping problems, the construction of the least excessive majorant
corresponds to v, [ref. § 6].

Remark. Recalling Lemma 2, we can define 28 (x) by
(5.42) oP0) = Hm iz rp(x) = lim S (),

where k runs through integers. Since v¥(x) is increasing as N./co, we put V,(x)
= ligmg,”’(x). On the other hand, ¥Pe(x) increases to F;p(x) as N oo and

S p(x) increases to v,(x). Thus we have, for & > o,
vp(x)— & < Frp(x) < FPp(x)+e
with some k and N. Furthermore,
FPe(x) < o) < Vo).
Therefore we have
(%) < V3.
On the other hand, “¥Pp(x) < Fe(x) < v,(x)” implies “V,(x) < v,(x)”. Hence
we get
(5.43) Vo= 9p.

§ 6. Optimal stopping of the stochastic control of switchings

Let W be the path space, namely the set of all right-continuous R"-valued functions
on [0, co) with left limits. Let F, and Fbe o-algebras on W generated by {w(s), s < t}
and {w(s), s < o}, respectively. By P; we denote the probability law of the path
starting at x with transition probability P*(t, x, B), which is a probability measure
on R" for any u, t and x and a Borel function of (u,¢, x) for any B. X(¢, w) de-
notes the tth coordinate of we W and the system (X(z), W, F, F, Pi,x €R%) is
a Markov process with transition probability P*. Define the transition operator Py’
by
1

— {eu(X(9))ds
(6.1) Plo(x) = Eflp(X(®)e © 1,
i.e. PY is the transition operator with killing rate ¢*, which is bounded uniformly in w.
We assume that P¥ is a semi-group which satisfies conditions (AI)-(A5) when ¢
runs through C.

13 Banach Center t. V.
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Let d be a I'-valued progressively F-measurable step function on [0, c0) X W,
ie.
(6.2 d(t, wy = dkA, w) te [kd, (k+1)4),
where 4 = 2-N. By %, we denote the set of all functions expressed by (6.2). Put

for

o0
A = U Uy and call an element of W an admissible control, more precisely: a con-
N=1

trol of switchings. According to [13], [14] we formulate the following problem:
'An admissible control d written by (6.2) defines the new measure Q2 on (W, F),
which satisfies the following conditions:

Qi(A) = PIO(4), AeFy,
Qi(X(t) e By i=1..k[F)) = P¥R(X(t:—~A) e Bi,i=1... k),
6.3) 4 <524,
Ql(X(t)eBi,i=1..k[Fy)= PEB(X(t—14)eB,i=1..k),
<< +1)4.

From (AS) we can see that

~ {er (X)) ds
©4 Edllp(X)le © 1< e“ligll,
where E! means the expectation w.r. to Q4. Let v be an F-stopping time, i.e. a
[0, co]-valued random variable with (z < t) e F,,. By 9 we denote the set of
all F-stopping times. Define ¥%*(x) by

cM)(X(o)) a0

(6.5)

- EC“(’)(X(J)) ds
yie) = |

[S 790 (X(s))e © ds+g(X(z))e O

cd
= 0. The problem is to maximize V",

V(x)

-4
By (6.4) we mean g(X(c0))e ©

(6.6) = sup sup V¥*(x).
; deNA reF
‘We review the randomization of stopping according to Krylov [4], [6], ‘which
reduces ¥ to o,. When the path stops at #, the gain on the path is given as follows:
t

7 ) = | 74 e o dsrg(Xt)e b
0

‘We apply the following randomization:

¢
~ {H)ds
Prob. (stop at (¢, t+dt)/stop does not occur before) = r(t)e 0

638) .
[-+]
where r(f) is non-negative Fy-progressively measurable. The condition “S r(s)ds

= o0 W.p. 1” means that the path stops w.p. 1. When we apply the randomlzed

icm
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stopping of (6.8), the gain on the path is given by (6.9):

- § r(s)ds

©.9) S ”(t)r(t)e Y gty b

_ S ~§’+° (fdc)(X(t))+r(t)g(X(t)))dt (=14, ).

0

By # we denote the set of all bounded and non-negative Fy-progressively measur-
able processes. For any 7 € 7 we define r = r,,; by

{"l« 1+!/n)(t) for T <o,

(6.10) re,it) =

for 7= o0.

Since (v <t < 7+ifn) = (v < )" (t—i/n < 1) e R, r,,; is F-measurable. More-
over, we can see that, as N ./ oo

@11 § Fom)e 8 dt-—»Se“‘S’c FO(X())ds+ e § e FUO(X(s)) ds
[ [ [
and
‘ o e E
—{recd — et
(6.12) §ex®)ritye 0 dt > (1—eg(X(D)e 9
o
Hence
(6.13) limlimI(d, r,,) = oX(7)
and
ol
(6.14) 1d,n < (e O | FAoQx@)|de+gl.
0

Since the right side of (6.14) is Qi—integréble‘: by (6.4), the convergerice theorem

implies

(6.15) limimEZI(d, r,. ) = V**(x).
i n

Therefore, putting ¥9(x) = sup ¥**(x), we have
red |

(6.16) Vi(x) < supE2I(d, r).
re®
Now we show the converse inequality. For re # we put ry = r+1/k. So n,
decreases to r and {|r|| < ||r||+ 1. Hence

- ,+cd

(6.17) dt o S Fox@))e Y % a koo,

. S fd(r)( X(t))'e_o
]

13*
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in L,(02), since § Pl lr "(’)(X(t))idt is Q%integrable. Similarly
0

618 E|| s)ne i d- § g(xo)r(e i ai|
6 0

o i : T ¢ t
< 20rll+ DE? § 1 g (x)|ae+ B2 § o) re(@)e 8%+ —r(eye=m+< fay
T 0

< 2017+ DeT|lgl| +2nd term.
Since the 2nd term tends to 0 as k. — oo, we have
(6.19) lim E4I(d, 1) = ELI(d, D).
k

Define the subset £, of £ by

(6.20) R, = {red®; infr(t,w) > 0}.
w

From (6.19) we can see that

6.21) supE:I(d, ) = supE':I(d, .

Suppose 0 < m <
7 50 that

infr(t, w) < supr(t, w) < M < oo. Then we can uniquely choose

-Tskr(s)ds
6.22) ed =1-k2V, k=

7 is an Fy-stopping time, because

0,1,...,2%

t

—{r(s)ds
(6.23) Tgst)=( " < 1-k2MeF,.
For simplicity we drop the superscript d if no confusion arises.
o _§ +e N1 714y —§r+c
629 e raw)a = Z { e’ ramar
0 =0 =
21 rpy 7 t
=31 (e r— e IemSe (X)) de+
i=0 1
2¥-1

Ty Th 1
4 Z e~ sr "Scf(X(t))dl =L+l
i=0 L1

Recalling (6.22), we have

t T T
(6.25) |e‘§_'——e‘5l"\ Sedr—e § = 2N,

Hence we can see that

1<t Tyy

(6.26) N o

1< 270 { e ey (x@) de - 0 as
0

icm

ON A NON-LINEAR SEMI-GROUP 197

at Q%-a.e. For I, we have by (6.22)

2¥-1 Tigr g Ty
627 L=27% Z @ - 5 S F(x@)dt— § eS¢ r(xry)de)
0
2N T,
= 2-NZ S ~fe f(X(t))dt
i=0 0

Combining (6. 26) and (6.27) w1th (6.24), we get

(6.28) \Se 5’+”f(X(t))dt 2—N23e SCf(X(t))dtj <2V e g‘!f(X(t))]dt-»O
, as N-»o00.
N_ 17151

Z ) '§’+‘r(t)g(X(t))dt. ‘

=0 T3

(6.29) § o iree r0g (X()dt =

Again by (6.22) we have
Ties t

S e 5’+”r(i)g(X(t)) dt

Tt

(6.30)

Figt r

1o

Tis1

r(t)( ‘ch(X(t))—e 5‘g(X(z,))dz+e S”g(X(r,))) S —S'r(t)di

= J,+2‘Ng(X(-z,)) e S €.
For ¢ > 0 we fix T so that “e~™T <¢” and define j = j(T) by 7; < T < 7j.,. Put

281

J= ZJ,+J+ >

i=j+1

(6.31)
Then we have

(6.32)

and

7] TJM 7 7
120d] < 2flgli(e= 7= § ) = 2)igli2¥

T
©

3l < 2lgl § e S'r(r)dt—zugrle & < 2liglle™ < lglle-

For the first term of (6 31) we observe from (6 22) that

=e" (e : '— 1)
. Tigg ) P
P Mt S rS)ds = e m(riy—~7), i=0,1, '--;]'f"l;
T
namely, ’
(6.33) nH-r, < MmN (=0, ...,j—1
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On the other hand, for any fixed path there are only finitely many A-jumping
times until 7T, say '

CIX@E-X(t=) =4 for t=0,,..0,<T,

X()-X(t=)| <4 for te[0,T]-1{0,,...6,}.

Moreover, there exists a positive constant 4, depending‘ on the path, such that
sup [ X(t)—X(s)| <44 - whenever 6, ¢ [a, min(T, a+-6)],

t, se(a, min(T, a + )]

Thus by virtue of (6.33) there exists a Jarge integer N such that .

i=1,..,p

i=1
(6.34) Dl <e
i=1

since g is uniformly continuous and ¢ is bounded. Therefore from (6.30)~(6.34)
we can see that ‘

0 t 2N-1 7,
(6.35) {S e=Sr+er()g(X(t)) de— 27V z e cg()i’(n)){ =0
o i=0

as N — co at Q;’,—a.e. Combining (6.35) with (6.28), we get

(6.36) Iy = |14, n-27" i@"(m[ L0 s Noo
i=

at Q%-a.c. On the other hand, “Efo(z,) < V¢(x)" and

(6.37) Ie< 2§ eS| £(x(0) ) e+ 201l
[}

and the right side is Q%-integrable. Hence

3 2N ' :
(6.38) B, = m2 ™" D Elo() < V), rea,

by recalling the definition of V4(x). Therefore, we obtain the converse inequality
of (6.16) by (6.21) and (6.38). This means that

(6.39) V(x) = PV T(x) = ¢
©) = Py ) = spep I .
Put Ay = {red; r(t) = r(k2~"), t e [k2-7, (k+1)2"%)}. Using the same
calculation as (6.19), we see that rsegtpE,‘iI(d, r) increases to.sup E4I(d, r). Hence
N : re®

we have by (6.39)

(6.40) V(x) = lim _syp E3Id, r).
Nroo detly, redty

icm
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Putting Vy(x) = sup EZLI(d, r), we shall show
deSty, re®

eUAy, redty

(6.41) V(%) = o{M(x),

where v@ is defined in (5.42). Define V' p(x) and Py, @(x) by
t

Virp(x) = B Se-frm ( FUOX()) + ,(S)) g(X(9)ds+ e=lr+cd P(X(1))
[

and
Vaap() = sup  Vislwp(x),
de¥w, reRN

respectively. Following the randomized stopping (6.9), if we stop the path before
t, the gain becomes

t
~{ r(s)ds
ds+g'(t)e ©

5
! ~{ r(eyde

. §
{o*@)r(s)e

el () +H8(r)) ds + g (XS e
0

So @ is g in the usual stopping problem.
In order to prove (6.41) we show

(6.42) Tp(x) = Vr,xp(x).
Recalling the definition of J, we have, putting 4 = 2-%,
Jop(x) = sup T4 %p(x)
ui

4

5 4
= supE¥ S =21 (X)) + Ag(X())) ds+ e—14-§ & o(X(4))
uk 0

4 5
< sup EX® S e—r@s—§ci® ( f"(O)(X(s)) +r(0) g(X(s))) ds +
de¥n, re®n 0

A
+emr - EOGX(U) = Vi 19(0)-
Conversely, for any d € Wy and r € &y, we get

4 R 4
El [S e~ £ (X(s))+r(0)g(X(s)))ds+e"“’)"‘s O o (X (A))]
[ *

a s a
< sup B[ e 1o (X)) + 2 (X)) ds+ =243 “g(X(4)] = Tp().
L 0
Hence Vy,1¢(x) < Jp(x). So (6.42) holds for. k = 1. Suppose that (6.42) holds
for k. Thus Py @ isin C. : .
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s 4 s ™

ka':- mtp(x) = E? [§ o—r(0)s={ct® ( f‘“"’(X(s)) + r(0) g(X(s))) ds +

4 s
~r(0)4-§ @ (et DA —fry
+e E[ S

4
(k+1)4
- +e
te 4 g(X(e+ l)A)/FA]].
On the regular conditional probability space the conditional expectation of the
right side turns into V§ e (X(4)) with some d € Uy and 7 € Zy. So we have
g -

Vil 1a0() < EX [S -Jes LU0 (5)) OV (K(5)) s +

| .
+er@-T SO o (X(A))] < Vi (P e @) = TTP)) = T+ p(x);

i

namely,
(6.43) Ve 19(%) < J¥Hg(x).

Let I'; be a sequence of compact sets which increases to I" as / — 0. Replace I"X
X [0, o) by Iy x [0, I]; we define J,(N) in the same way. Put F(x, u, 1) = T§¥p(x),
w € C. Since F(x,u, A) is continuous in (x, #, A) and Jip(x) € F(x, 1 x [0, []), the
implicit function theorem gives us the existence of a Borel function m, R" — I} %

X [0, 1] such that .
F(x, m(x)) = Jip(x).

Hence F(x, m(x)) is in C. So we can choose a I'}x [0, /]-valued Borel functions
my,i=1, ..., k, such that
T 50 (x) = Jig(x), TH"9(Jig) (x) = J2p(x), ...

o TP 9T ) (x) = T ().

Define d e Uy and r € Zy by
), r()) = my(X (i), JA<t<@G+DA, j=0, ... k.
€]
" k+)d
64 Visrap@ > B [ eIrve (140 (X(0) 418X (1)) di +
0

(k-x-l)d

tem § rrep(X(et1)4)| = T .
By routine we can show -
(6.45)

Tivp(x) = JH'e(x), VI

Oi—limJ{‘qJ = J¥p.

Using (6.44) and (6.45), we can show the converse inequality of (6. 43) This completes
the proof of (6.42).

e 4 c(fd(S)(X(s))‘l';(S)g(X(S))) ds 4 "

icm
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Since ,limJ ¥o(x) = v (x), we see that
/o0

(6.46) lim Vi ep(x) = 957(x).
A0 .

T . o
When T tends to oo, S e’s’“(f"')(X(i)) +r(1)g(X(0)) dt+é‘5’+°q;(X(T)) conver-

ges to I(d, r) at Q4-a.e. by virtue of (6 4), and is dominated by
+|gll. Hence we have for d € Wy and r e &y

(6.47) ELId, P =

e o| O @)l de+
lim Vizwp(x) < lim Vy, p(x) = o00().
k7o . kAo . . .
Takiﬂg the supremum w.r. to d and r, we get

(6.48) Va(x) <

Now we shall show the converse of (6.48). For any r € &y and pos1t1ve T
we define r” by

< oP(x).

kz-",'

o (@) for t<T,
T = { for t>T.
Then
T 0™ T
©49) | eIrto( fIO(X(6)) +r(1)g(X(1)) dt + e~ +ep(X(T))
0 . .

) TR ot T
= I(d, M) —e-17 | e~1epto (X(1)) dt+ =7+ o (X(T)).
T
Recalling (6.4) we see that
(6.50) EZ|2nd term| < e”7||fl], E3rd term| < e=7||gl|,

where || f]| = sup|f*(x)|. Therefore, from (6.49) and (6.50) we have

(6.51) Vire() < ELId, r)+e~ (| f1]+ llglD)
< VyG)+e (ISl +llgl)  for  de Wy, reRy.
Hence
Vi x@(x) < Vu(x)+e~ ([ +11glD-
As k tends to o0, we have
(6.52) :13; Va e @(x) < Py(x),

namely the converse to (6.48). This completes the proof of (6.41). As N tends to
oo in (6.41), we get
V() = v,(x) = v(x)

recalling the Remark in § 5. Thus ¥ of (6.6) is a stochastic construction of the least
S;-excessive majorant of g.
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O MOMEHTAX OCTAHOBKH IOJIVYCTOHUYHUBBIX
AP OYINOHHBIX IMMPOIIECCOB

A. A, HOBHUKOB
Mame. 1t wm AH CCCP, Mocksa, CCCP

PaccMaTpHBAIOTCS HEKOTOPBIE KIIACCH! MOMEHTOB OCTAHOBKH IIOJIYYCTOMIMBEIX Mud-
(ysuonubIx mporieccoB. ITOMydeHBI TOUHBIE M aCHMITOTHYECKHE Pe3yJBTaThl, Xa~
PAKTEPHSYIOLINE DACTIPENENICHIS PACCMATPHBAEMEIX MOMEHTOB OCTAHOBKH.

I. Begenue

OmuomepHEIA MapxoBCKuiH npoxece (X,, #,, P,) cO SHAYEHMAMA HA HOJIYIPAMOK
R™ HasLIBAETCA noAyycmotiuuehiM, eCTA ero mnepexojuas bymkums P(t, x, B)
(B € #* — Gopenenckaa o-anrefpa na R*) o6namaer aBTOMOJEILHBIM CBOHCTBOM,
T.€.

P(rt, X, B) = P(t, r~*x, r™*B)

npu Beex r > 0 u HexoTopom mokasarene o > 0. ITosyycrofumsrie’ MapKOBCKUE
nponecce! Ha R BBen y omvcan Jlamnepry B padore [5], B xoTopofi moKasaHo, Y10
BCE HEBHIPOIKACHHEIE no:ryyczroﬁqmsme b dy3noHHBIE IIPONECCH nopox(nazo'rca
OXIEPaTOPOM

fo(x) = bx! =M () 4 dx? A (),

‘ oh
rae d > 0 u b — mapamerpsl. Mer Gymem manee 0603Hauats @ = —d—+l —o. U3

pesyasraTos JlaMuepTy clexyeT, YTo IPAHMIA X = 0O IIPH BCEX 3HAUEHMX Iapa-
METPOB ABJIAETCA ECTECTBEHHON, 2 Tpanuu@a X = 0 SABJIAETCS ECTECTBEHHON TOJBKO
npu ¢ 2> 1; mpu ¢ > 0 sBiUsterca saxearkBaiomelt w npr 0 < ¢ < 1 sBNAeTCAH
perynaprolt, TpMUEM B CHIIY IPEINIONOMKEHHS O HENPEPHIBHOCTH TPACKTOPUi Ha
rpanyne x = 0 moxker Gorrs JMGo xorIomenue MO0 OTpArKEHNE,

B aroit 3ameTre PACCMATPHBAIOTCA CIELYIOUINE KIIACCHI MOMEHTOB OCTAHOBKM !

inf{t > 0: X, < a(t+y)'},
0, =.inf{t > 0: X, >
o = inf{t > 0: X, > c(t+3)"},

Ta

H

c(t+yP mm X, = 0},
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