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A class of generalized Gaussian random fields X = X(¢), p € C(T), T < RY, is
considered. It is characterized by the condition that the scalar product {f, g> in the

reproducing kernel Hilbert space s#(X) = C&(T)..,, is given by a pth order Di-
richlet form
Sy = Y, Jan@DfDgdt
el <o T

such that the norm (f,f»V? is equivalent to the Sobolev norm ||f]|,,

2=y Ip%riar.
W1l ];SI 2t

T
For such X, the existence of the canonical white noise W, is established and under
some additional assumptions stochastic equation for trajectories
PU2Y = W,
is derived, where P is a self-adjoint extension of

Po= D (=1)PD(as(t)D")
lal,[B]<p
with D(Py) = CP(T) (similar results for Lévy Brownian motion were obtained by
Z. Ciesielski in [5], [6]). We prove also that trajectories of such Gaussian random
fields are o times continuously differentiable for every a with |a} < p—dj2.

0. Introduction

In this paper sample path properties of a class of Gaussian random fields (the so-
called p-th order Markov fields) are considered with an attempt to derive a stochastic
(pseudodifferential) equation for trajectories with a white noise on the right hand
side, and in this context to investigate the smoothness properties of trajectories.
The work was motivated by the recent papers of Z. Ciesielski [5], [6] on the Lévy
Brownian motion X = X(¢), ¢ € R, where he proved the existence of the canonical
white noise W, for X and derived a stochastic equation for trajectories

oy DIYAY = W,
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o, being a constant and D the negative Laplace operator in R%. The reader will
find many ideas of Z. Ciesielski in this paper, and I am greatly indebted to him for
the generous help which I received from him while working on the problem.

We shall deal with the class, denoted by & ,, of (generalized) Gaussian ran-
dom fields (GRF’s) X = X(¢), ¢ € C¥(T) = 2(T), where T is a smooth open do-
main in R%. This class is characterized by the condition that the reproducing kernel
Hilbert space (RKHS) #(X) corresponding to 2 GRF X & &, is obtained by the
completion of 2 (T') in the norm :

s _ ] w757 4 |2
St (.u.%-l,, ; e () DD )

and the norm {f,f!/? is supposed to be equivalent to the Sobolev norm ||f]|,
= (£,1)3/*, where .
(Fifhe= Z {10712t
la|<p T

This assumption (denoted by (A) below) is rather restrictive and not satisfied for
example by the Lévy Brownian motion; however, it enables us to apply without
difficulty some of the well-known functional analytic machinery which is needed
to prove the above-mentioned facts (it might be worth recalling too that condition
(A) was used in [17] to prove the Markov property'of X). )

According to [5], [6] we call the canonical white noise corresponding to a given
GRF X the unitary mapping W,: L*(T) - H(X) satisfying

() X(p) = Wx(P~%), e (),

where H(X) is the closed subspace in L*(2, F, P) spanned by {X(p), p e 2(T)},
and P is a self-adjoint extension of the operator

0.2) Py =

lel, (Bl <p

Theorem 4.2 (cf. Theorem 3.1, [5]) states that, for every X e &, the canonical

white noise W exists. It should be noted to avoid confusion that the word canonical

in this context simply means that the white noise which is defined by means of

a given O.N. basis in L*(T) does not, in fact, depend on the basis, and so the white

noise representation (0.1) is different from the canonical white noise representation
of a Gaussian process in the Lévy-Hida sense ([12], [10]).

In Section 5 we obtain a stochastic equation for trajectories of a GRF X € #,
of the form ‘ ‘

(0.3)

(= 1)PLDP(aqp(£) D%).

Pl/?.X _ Wx:

where' P2 is the positive (self-adjoint) square root of P. Equation (0.3) should be -

under'stood in the distribution sense. However, to prove that the left-hand side of
(0..3) is a random distribution (i.e. that X(P*/2¢) is continuous in 9(T) a.s.) we had
to impose additional rcstrictions on X (see Theorem 5.1). It is clear that the form
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of equation (0.3) (more exactly, the operator on the left-hand side) is due to the ‘
factorization of P in the form P = PY2P1/2  while another factorization of P: P.=
L*L~ (L* = (L¥)*) may result in a simpler (say, differential) equation for tra~
sectories of X (see the Example in Section 5).

Finally in Section 6 we prove a conjecture of Z. Ciesielski about the smoothness
properties of trajectories of a GRF X € #,, namely that all the derivatives D*X
up to order p—d/2—1 if d is even and p—df2—1/2 if it is odd exist in the usual
sense and are continuous a.s. (Theorem 6.1).

1. Preliminaries

In this section we introduce the definitions and notation and recall some properties
of the self-adjoint extension of the operator P, which will be used later.

Let T'be an open smooth domainin R%, d > 1, leta, € C=*(T) N C(D),lal, 1Bl <P
be given (complex-valued) functions, and let £, g be a symmetric positive Dirichlet
form of order p on Z(T) x2(T), (T) = C(T): '

(1.1 g = Z §aus(t) D*fDPgadt = 3g. 1,
|}, |Bl<p T

£, g € @(T). We assume that the following condition is satisfied, even if it is not
explicitly mentioned below:

(A) the norm {f, fYY2 is equivalent to the Sobolev norm ||f|l, = (f.f)3/, where
(fy = 2 11D .

|<pT

Clearly (A) implies that the form (f, g) is positive definite, and so the operator

Po= Y (—1)PDM(aes(r)D?) with D(Po) = 2(T) is symmetric and positive
o, |8 =

deﬁnit[el ‘lﬁ)‘(}so) is dense in L2(T), and thus by Friedrichs’ theorem there exists a self-
adjoint extension P of P,, the so-called Friedrichs’ extension, with the following
properties:. .

P.1. R(P) = I*(T) and D(P) = #(T)~D(P}), where #(T) is the Hilbert
space completion of 2(T) in the norm {f,f>"*;

P.2.' P! exists and is a continuous mapping L*(T) - L*(T);

P.3. If P1/2 js the positive (self-adjoint) square root of P, then D(PY?) = 3#(T);

P.4. PY2(D(P)) = #(T);

P.5. P12 is isometry o# (T) — L*(T).

For P.1, see [13], p. 110 or [8], p. 1240. For P.2 and P.3, see [18], p. 620-621.
P.4 is obvious from P.3 and the definition of P¥2 P.5 follows from (*) (P'*f,
PU2FY = (F, 15, F e #(T) ([18], p. 621),i.e. P2 is a unitary mapping #(T) - LX(T),
and the fact that R(P) = L*(T) implies R(P*2} = L*(T).

& = ;m’dr, It = Ch N2
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Remark 1.1. As follows from Garding’s inequality ([1], p. 78), condition (A)
is implied by the uniform strong ellipticity and positivity of the Dirichlet form
{f, 8>, i.e. by the following two conditions:

(E) there exists a constant C > 0 such that for all xe R%, te T

‘Re Z aup()X*xP | = Clx|?7;
le,iBl=p

(P) there exists a constant C > 0 such that for all fe 2(T),
P = CLh.

2. The class #, of GRF’s

We denote by 2'(T) the dual space of 2(T) and by 2*(T) the space of all conti-
nuous antilinear functionals on (7). Hence if F(g) e 2'(T) (2*(T)) then F*(p)
=F(®) e 2*(T) (2'(T), respectively). We embedd s (T') in 2*(T) by setting f*(¢)
= flg) = (f, p) for f e #(T). Now, as f*(p) is a continuous mapping #(T) — C*
for every ¢ € 2(T), by the well-known theorem of Aronszajn ([2], p. 343) #(T)
is an RKHS and there exists a kernel R(p, w) on 2(T) X 2(T) such that

R.1. R(p, *) e #(T) for each ¢ € Z(T);

R2. {R(p, -), ¢ € 2(T)} span #(T);

R.3 (the reproducing property). {f, R(p, *)p = f*(p) for every f & H#(T)
e (D).

As R(p, ) is positive definite, there exists a (generalized) GRF X = X(¢), p &
2(T) on a probability space (2, #, P) such that

EX@X®)] = R@,y), ¢.peB(T).
Fllearly #(T)is an RKHS corresponding to X, and we shall occasionally write H(X)
instead of s#(T). We denote by &, the set of all GRF’s X = X (@), ¢ € 2(T) for
which the RKHS #(X) is obtained by completion of (T in the scalar product
{f, &> given by (1.1) and satisfying condition (A).

Remark 2.1. 1t is known ([17], Theorem 5.2) that if p—df2 >0 then Xe #F,
is a Markov (and continuous a.s.) random field. A slight modification of the argu-
ment in [17] enables us to prove the Markov property for all (generalized) GRF
X e F, (see also [14], [11]). The following statement is technical but it will often
be used later:

ProposiTiON 2.1. R(p, ) = (P, ), ¢,y e 2(T).

Proof. Integration by parts gives

SR@ D= > SayODAOFRG, Dat = (Bf, R, ),

|, [B]<p T
Hence, by the reproducing property,

@1 (B, Ry, ) = (f, )

and

Lipe2(D).
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for all f, y € (T). Observe that this equality holds for all fe D(P) = #(T) as
well. In fact,

2.2) (f,9) = (P21, PPR(y, *))

as R(y, ) € #(T) = D(P'/?). Now if {f,} < 9(T) is a sequence convergent in
H#(T) to fe #(T), then f, » fin L*(T) and P*/%f, — P2 fin L*(T) by P.5. Hence
(2.2) is true for all fe #(T). I f € D(P), then P'/*fe # (T)= D(P'*) by P.4 and
50 (2.1) holds for all fe D(P). But R(P) = L*(T) > 2(T) by P.1, so that, for every
¢ € 9(T),f = P~p belongs to D(P), and substituting f = P~'¢p into (2.1) we com-
plete the proof.

3. The dual space of J#(X)

We define #_ (X) to be the completion of 9(T’) in the norm (f,f>* = (R(f,.))**
and H(X) to be the completion of {X(¢), ¢ € 2(T)} in L*(2, #, P). We also write
# ., (X)and {f,f>, for #(X) and {f,f), respectively. It is easy to see that the spaces
H(X), #_(X) and #,(X) are isometric while the isometry J: H(X) — #,(X) is
given by J[X(¢)] = R(p, * ), p € Z(T), and the isometry R:#_(X)— H o (X) is
given by R[¢] = R(p, ). It follows from Proposition 2.1 that R = P~ on 2(T).

PROPOSITION 3.1, .. (X) and #_(X) are dual as Banach spaces and the ca-
nonical pairing between them on 2(T) x2D(T) is given bythe sca lar product in L*(T).

Proof. As 9(T) is dense both in s, (X) and #_(X), it is enough to check
that

(3.1 (f, 82 < Lfif>le. & f.8e9(D),

and

(3.2) SFofde= sup (L@ fe2(D).
P

But (3.1) follows easily from the reproducing property:
I, 8)12 = [KFs R(gs W+ [P < (LS D4<R(gs
= (D4 R(g, 8) = .8, -
The first part of (3.2) is also obvious: '
sggl(f, g = szpl<g, R(f, D412 = <R, *)s RU, D+

= R(f.f) = fif>-»

where I, = {ge 2(T): {g, &) < 1}. To prove the second part, recall (2.1) and
Proposition 2.1:

sllfpl(f, oI

‘ )y -R(g: ' )>+

i

S]llp[(Pf, R(gs ° ))lz = S}J—PIR(Pf’ g)l2

i

s;lp|<Pf, -1 =
(fst)= <f’f>+
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Remark 3.1. We shall retain the same notation (f, g) for the canonical pairing
between o, (X) and 3#_(X), i.e. (f, g) will denote the unique bicontinuous sesqui-
linear form on 4. (X) x #_(X) such that

(,8) = \/0z®d on - DT)xD(T).
T .

Remark 3.2. Let H,(T) be the completion of 2(T) in the norm [|f1,, and let
H_,(T) be the corresponding dual space with ||f|l., = sup [(f, )] (see eg.
[19], p. 142-145). elier

Now, as the norms || f||, and {f,f>}/* are equivalent, the negative norms |[f] Il-»
and {f,f>1/? are equivalent too, and so we can (and will) identify algebraically the
spaces H,(T) and o, (T) as well as H_,(T) and o_(T), respectively.

4. The canonical white noise

In this section we generalize the concept of the canonical white noise W, associated
with a GRF X, which was introduced in [5], [6] for the Lévy Brownian motion.

Let {¥;,/=1,2,..}and {f},j = 1,2, ...} be the O.N. basis in H(X) and L*(D),
respectively. Define

Y@) = )\ Y, P, ped(T).
7
The series are convergent a.s. as

D 1@ P = 3 (P11, f)]2 < IP-2g]12 < co.
jsN isN

Ttis easy to see that ¥ = ¥(¢), ¢ € D(T) is a (generalized) GRF with mean zero
and the same covariance as that of X

EX@ T = ). b, P) Gy PR = Y (P02, £~ o, 7
J : 7

= (P72, P=12y) = (p, Piy).
Clearly H(Y) < H(X). In fact, they coincide.

ProrosiTioN 4.1. H(Y) = H(X). :

Proof. It suffices to show that the set & = {z = (21,22, ...), = (P20, /),
peD(T)}isdenseinI* = {x = (x,,x,...), x; € C*, 2 (> < o). But @(T) is
dense in L*(T) = p~12g -1z
- # (1)) =>(13—1/2.@(T ) 1s(<712nlsse ielzsze(;)l:f&gg (g:;sf m/lz s an isometry LZ(T)

;r}IEOREM 4.1 (cf. Theorem 4.1 [6]). Let {f;,j = 1,2, ...} be a given O.N. basis
in L (T). Then, given the GRF X e & »» there exists a umque O.N. basis {X;,] =
...} in H(X) such that

c4.1) X(g) = Xm, PHEf) pea(T).

icm

TRAJECTORIES OF GAUSSIAN RANDOM FIELDS 237

The proof, which utilizes Proposition 4.1 and the fact that P~/2 is an isometry
L*(T) - #(T), is quite the same as that of Theorem 4.1 [6].

According to [5], [6] we call the canonical white noise corresponding to
a given GRF X = X(¢), ¢ € 2(T) the unitary mapping W,: L*(T) » H(X) defined
by the formula

W = 2 G fs

where {X;,j = 1,2,...} and {f;,j=1,2,...} are given as in Theorem 4.1.

THeoReM 4.2. For a given GRF X = X(¢), p e D(T), X F, the canonica
white noise Wy, exists, is independent of the choice of the O.N. basis {f;, j= 1,2, ...}
in L*(T) and
(4.2) X(p) = W(P'g).

Proof. The only thing to prove is that W, does not depend on the choice of
the basis in L2(T). Let {f},j=1,2,...} be another O.N. basis in L?(T). Accord-
ing to Theorem 4.1 there exists an O.N. basis {X],j=1,2,...} in H(X) such
that

D K. 5) = ) X (P, f}) = X(@)
J 7
for every ¢ € 9(T). We want to prove that
W) = O X4 f) = Z,X}(f,f}) = W), JfeIAT).
7

But as W, and W, are unitary maps L?(T) - H(X), this follows from the fact that
P-129(T)is dense in L*(T).

5. Stochastic equation for trajectories

In [5], a stochastic (pseudodifferential) equation for trajectories of the Lévy Brown-
ian motion X = X(t), t € R? was obtained, of the following form:

o, DUHDIYY — W,
where Wis a white noise, D the negative Laplace operator, o, a constant, and

D"’“)/“X((p) X(D“'“)/“qa) @ € D(R?). We are going to derive a similar equation
for (generalized) GRF X = X(p), ¢ € 9(T), with DU+1¥* replaced by P2, Unfor-
tunately we could not obtain it under condition (A), under which all the previous
statements were proved, and some additional assumptions seem to be necessary.

The spaces #,(X) and H(X) are isometric and the [isometry J~'R: - (X)

— H(X) is given on 9(T) by J-'R[g] = X(¢) (see Section 3). We denote X( f)
J-R[f] for all fe#_(X). Clearly each element of H(X) can be ‘written

in the form X(f) for a certain f € 3#_(X).
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PROPOSITION 5.1. X(P12¢) = Wi(p), ¢ € 2(T).

Proof. From Theorem 4.2 we have X(f) = X(f) = Wx(P~12f) for every fe D(T).
As P2 e L2(T) = #_(T) for ¢ € D(T), there exists a sequence {fi} = 2(1)
such that f, - P1/2¢ in L*(T) and hence in #._(T), i.e. X(/,) = X(P/*¢). On the
other hand, P-Y/%f, » P=12P1/%p = ¢ in L*(T) as P~/ is a continuous map
L*(T) - LA(T); hence Wy (P~*f,) - W.(p), which proves the proposition.

As follows from a theorem of Minlos ([9], p.413), the trajectories of X e #,
are random distributions a.s., i.e. the mapping ¢ — X(¢)(w) is continuous in 2(T)
on an w-set of probability 1. Now, PY/2X is not well-defined for X(-) e 2'(T) as
P12 in general, does not map 9(T) into 2 (T), but it may be well-defined on some
special subspaces of 9'(T). This discussion leads us to the consideration of the fol-
lowing three cases where the operation P/2 on trajectories of a (generalized) GRF
X is well-defined and continuous a.s. with respect to the convergence in Z(T).

B.l. X(-) e #_(T)as;

B.2. P12 maps 9(T) into 9(T") continuously;

B.3. T = R?and P/ maps 2(R%) into & (R%) continuously, where (R
is the Schwartz space of all rapidly decreasing C*-functions on R’.

We define P*/2X(p) = (X, PIg), p € 2(T) if B.1 holds, recalling that P/2
maps 2(T) into o, (T) continuously (this fact is an easy consequence of P.4 and
P.5) and (f, g) is well-defined and bicontinuous on #_(T) X . (T) (Section 3).
We also set PY/2X(g) = X(P*/?¢) if B.2 or B.3 is true, as in the latter case, by anot-
her theorem of Minlos ([9], p. 395), X(-) € #'(R) as. '

THEOREM 5.1. Let any of the conditions B.1-B.3 be satisfied. Then almost every
trajectory of a GRF X e &, satisfies the following stochastic equation:

(5.1) PI2X — W,

Proof. From Proposition 5.1, it is enough to check that in any case (B.1-B.3)
P112X(g) = X(P'2g) a.s. for every g € 9(T). By the definition of both sides this
holds with P*/2g replaced by f'e 2(T) and a simple continuity. argument (as in the
proof of Proposition 5.1) concludes the proof.

The rest of this section is devoted to a more detallcd discussion of the condi-
tions B.1-B.3. Starting with B.2, we can only say that it is satisfied if P!/? restricted
to 2(T) (P29 (T)) is a differential operator with C%-coefficients. In this case
equation (5.1) is a stochastic differential equation and the simplest one in many
ways. However, we do not know any fairly general conditions on the operator P,
which guarantee that P1/2|9(T) is a differential operator. In any case, if Py = L?,
where L is a differential operator, symmetric and positive with D(L) = @(T), then
P'2|9(T) # L in general. In this context it should be noted that our Theorem 5.1
only very slightly overlaps a result of Dudley ([7], Theorem 4.4) on Gaussian fields
satisfying certain differential equations with white noise on the right-hand - side.
As for B.1, the sufficient condition for it is given in the well-known Minlos-Sazonov
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theorem ([9], p. 422-423, see also [16]); namely, the natural embedding K (T)~
2 _(T) must be Hilbert-Schmidt (H-S),

PROPOSITION 5.2. Let T < R* be a bounded open domain, and p > df4. Then
the natural embedding 3, (T) — #_(T) is H-S.

Finally, for B.3 we have

PROPOSITION 5.3. Let P, be a (differential) operator with constant coefficients.
Then P** maps 5 (R%) (and 9 (RY) into & (R?) continuously.

Both statements (Propositions 5.2 and 5.3) may be known, but we could not
find them in the literature and we give the proofs in the Appendix below (they are
proved under assumption (A), of course).

We end up this section with an example of the so-called Ornstein-Uhlenbeck
process X = X(¢), t € R, which illustrates our Theorem 5.1 as well as the remark
(see Introduction) that the form of the stochastic equation for trajectories of a given
GRF X depends on the factorization of the operator P.

ExampLe. Let X = X(f), —c0 <t < + o0 be a real-valued Gaussian process
with mean zero and the covariance R(?, 5) = e~-5/2. Then #,(X)= H,(R!)

= {u = u(t), t € R': uabsolutely continuous and {u, ) = § (ui?+ e Pdt < o).
! -0
The operator P is given by Pu = u—u" on D(P)= H,(R') = {u = u(t),teR':

o0
u, u absolutely continuous and § (2 +w|+w’|?)dt < co}; D(PY?) = H,(RY)
-0

and PY2u(t) = 1/y2rn | €**(1+|x])"/*(x)dx. By Theorem 5.1 and Proposition
—00

5.3, the trajectories of X satisfy the pseudodifferential equation P/ X = W, while,
on the other hand, they solve the differential equations L*X = W#*, where L*u
= u+w/, D(L*) = H,(R') and W* are white noises on R'. Note that L*L~
= L-L* = P,

6. Regularity of trajectories

In this section we prove a conjecture of Z. Ciesielski about the differentiability of
trajectories of a GRF X = X(p), ¢ € 2(T), T = R® of the class #,; namely,

THEOREM 6.1. If p > df2, then almost every trajectory of a GRF X € #, is |a|
times continuously differentiable for every w such that |«| < p—dj2 (i.e. D°X(+)e
C(T) a.s.).

Remark 6.1. The continuity of trajectories of a GRF X e &, if p > d/2 was
proved in [17].

Proof of Theorem 6.1. The idea of the proof goes back to [4], p. 633. From
Theorem 4.1 we have

©.D X(@) = X% (9, F),
J
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where {X;,j = 1,2, ...} is an O.N. basis in H(X) and {F;,j = 1,2, ...
basis in #°(X) (we can let it be such that F; € 2(T)forj = 1,2,
define

6.2)

} is an O.N.
W) If [l < p—df2,

x*@ =y G,D0{F@, aeT.
F

We prove the theorem if we show that

(a) the series (6.2) are convergent uniformly on every compact subset of T
with probability 1;

® (X% @) = (—~1)¥(X, D%) for all p € Z(T) as.

Now, (b) easily follows from (a) and

N
&% ¢) = Iim Y X,0F;, 9)
Now jI7
i N
= iom 2 X, D)= = (~DFI(X, D%).
=1 .

Thus, it remains to establish (a). Define
: N
X3 = Y X, 0FE@,
J=1

N
Iv@ = @ = Y DK@
Jj=1

and
N

Iy(a, b) = EIX3(@-X30)* = Z |D*Fy(a)— D*Fy ) 2.
=

The uniform convergence of the series (6.2) will result ([3], cf. [4], Theorem 2) from
the following

PROPOSITION 6.1. There exists a constant C > 0 such that uniformly in a, be T

andN=1,2,...(3)
(6.3) @< C
(6.4) In(a, b) < Cla—b|!*.
Proof. We shall only prove (6.4) as (6.3) is proved analogically. Since F; € 2(T),
j=1,2,...,wehave

N
Iv(a, b) = Z (D*Fy(@)- D*Fy () (FH @~ D F;B))
= |

N
= 2D E@E@-E@EB-EOED+EOEE),

where D*® = 9% [9af1 ... 8aftobT ... OB, ot = (ay, ..., Og).

(*) Note that T may be unbounded.
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By the reproducing property,

Fy(@) FyB) = <F}, R(a, Y)<F},R(b,")>;

therefore
Iy(a, b) = D™*({R(a,-), Py R(a,- P—(R(,), PyR(a, )y +
+{R(,*), PyR(b, - ) ~<R(a, ), PyR(®,- ),
where R(a, b) = E[X(a)X(D)] exists if p—dj2 > 0 and is jointly continuous ([17]),
and Py is the orthoprojector from #(T) onto \/{F;,j = 1, ..., N}.
Denote A(a, b) = {R(a,*), PyR(b,-)>. Since the norms {f,f>/> and ||f||,

are equivalent, there exists a bounded symmetric operator B with bounded inverse
B! such that (see also [17])

(fa g)n = <f> Bg>

and
R(a,-) = Bor(a,+),
where or(a, b) is the reproducing kernel of H,(T). Hence
A(as b) = (QT(“’ : )s PN@T(b" ))p'
Next, H,(T) can be naturally embedded as a subspace into H,(R?). Therefore

eT(a .) = PTQ(a’.)5

where Py is the orthoprojector from H,(RY) onto H,(T) and g(a b),a,beR!is
the reproducing kernel of H »(RY, o(a, b) = o(a—b), and

oty = 1j@ny* [ o= ( D7 x4 T,
Rd

Je|<p
All these manipulations result in a final expression for A(a, b) with which we shall
deal below; namely:
(6.5 Afa, b) = (o(a,-), 4g(b,"))»,

where A = PyBPr is a bounded operator H,(R?) —» H,(R%), and {|4]] is bounded
uniformly in N = 1, 2, ... We shall prove that D**/4(a, b) exists in the usual sense
for |¢| < p~dJ2 and is Holder continuous with exponent 1/4, i.e,, in fact, Prop-
osition 6.1 and Theorem 6.1. This will result from the following steps: ‘
PROPOSITION 6.2. D%(a,-) & H,(RY, la| < p—d/2.
Proof. Compute

[1D%(a, )} = constS x”‘(z ) dx <
L 1BT<p
if |a] < p~d/2 ([19], p. 244).
PROPOSITION 6.3, D*F A(a,b) = 8™+ A(a, b))da ... da5:0b: ... obfje exists
in the usual sense for |al, |B| < p—d[2 and
(6.6) D*PA(a, b) = (D%(a,"), AD°0(b,)),, a,beR".

16 Banach Center t. V


GUEST


242 D, SURGAILIS

Proof (by induction). Let (6.6) hold for some a, f: |e| <p—d/2—1, |f] <
- d/2 We shall see that D¥/A(a, b) exists and (6.6) holds for & = a+e;, ¢, =
©,...,0,1,0, ..., 0). Let

l-—l
A, D% A(a, b) = h=(D*#A(a+he,, b)—D** A(a, b))
= ((h"’(D“g(a+he,,‘)—D“Q(a,-)),ADﬂQ(b,.))p.
Then

{AhDu'ﬂA(a’ b)_(D;Q(a" )r ADﬂQ(b’ ))PI
const||h“‘(D“‘g(a+heu' )—D%(a,- ))—Dgg(a,' )HII

< const( [h‘l(e""‘e'—l)*tx,lzxz“ ( V x"’) dx )1/2

as t — 0, since the integrand tends to zero as i — 0 at every x € R? and is domi-
nated by the function 2x?x2*( Y, x)-! which is in L*(RY).
|8]<p
The proof of the following inequality was reported to the author by Z. Cie-
sielski (private communication).

PROPOSITION 6.4. Let |o| < p—d[2. Then there exists a constant C = C(p,d)
such that

[D**g(a)—D**0(0)| € Cmin(l, |a|'/?).
Proof: We have

D@D = (?—2%'_[ S x2%(elex ~ 1) ( Z 20) e
& 6Tz

Let |a| < 1,Vand let A be an arbitrary number, 0 < 4 < 1. Making use of the in-
equalities [e'** — 1| < |ax| and

1
> —pmx (L [2),
we get
I = |D*p(a)—D**(0)}
de-t S [x|*™ax| ,  2dv-t” S J6]219 gl

<
S Q@ny . T+ X 4 PP T+ [x]?#
Jax| <|a] Jax) |af?

=1+,
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Here
I, < |a]*const S—l—ll—ﬁdx = Cla]*;
R !
and
xlzi“[
I, < const J——
2= 1+[x|??
J|af*
]
p2lel+d—1
= const ——dr
S 1 1+rzp
g

la
< Clal(l—l)(zy—d—zlu[).
Therefore I < C(laf*+|a|1~r=4-240) Now, the following equation for A has
a unique solution 44:
A= Q1-=-)@2p—d-2]a)),
2p—d—2ja]
2p—d-2Je|+1"
Thus, |D**g(a)—D**0(0)| < Clal™, la| < 1. ‘See that Ao = 1/2. In fact, 1o = p(uo),
where () = u(l+u)~! and uo = 2p—d—2|«| > 0, i.e. to > 1 as u is an integer.
But ¢'(¥) = (1+4)~2 > 0, which implies that 2, = @(uo) > ¢(1) = 1/2. Clearly
|a* < |a)'/? for |a] < 1. Consequently,
(6.7) |D**0(a)—D**(0)] < Cla'/?, lal< 1
It is easy to see that the left-hand side of (6.7) is bounded uniformly in e R,
which together with (6.7) implies Proposition 6.4.

Now to end the proof of Proposition 6.1 and, in fact, of Theorem 6.1 it suffices
to show that there exists a constant C > 0 such that for all @', a”, b e R%, a: |2 <
p—dJ2 and operators 4: H,(R?) —» H,(R) with (say) ||4]| < 1, .

|D**A(a’, B)—D**A(a", b)] < Cla’ —a’|*.
But this easily follows from (6.6), (6.7) and the reproducing property:
|D**A(a’, b)—D**A(a”, b)|*
< C|ID%e(d, )~ D@, )|
< ClD*%(e(@,+), 0@, ))p=D**(a(d’-), e(@’, Myl +
+ClD(o(@",-), (@, ))p— D *(a(a"s ), 0@, D))
= 2C|D*p(a' —a'")—D**9(0)| < consta’'—a"['/2.
Remark 6.1, 1t is known ([17]) that a GRF X e #,, p—d[2 > 0, is the so-called

Markov random field of order p, i.e. if I' < T is a smooth (d— 1)-dimensional surface,
then the boundary data H(I") = ﬂ H(T,), where I, is an e-neighbourhood of I,

Zo= 10<1.

is the subspace spanned by p—1 weak’ normal derivatives of X on I" (see [17] for

16*
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details). Now, Theorem 6.1 implies that among those p—1 ‘weak’ normal deriva-
tives the first p—d/2—1/2 if d is odd and p—d/2—1 if it is even are ‘strong’, i.e.
are derivatives of the trajectory in the usual sense.

7. Appendix

‘We present here the proofs of Propositions 5.2 and 5.3. Let us start with 5.2: it
will follow clearly from Propositions 7.1 and 7.2 below.
PrOPOSITION 7.1. Let H, be a Hilbert space completion of (T in the norm
Lf, f132, which is equivalent to the norm {f, f Y4, and let H_ be the dual of H, . Then
the natural embedding #,.(T) — # _(T) is H=S iff such is the embedding H, — H_,
Proof. Asthenorms{f,f>4/*and [f, f13/* are equivalent, there exists a bounded
symmetric operator B: #,(T) - 3, (T) with a bounded inverse B~ such that

(71) [f’g]+=<Bf:g>+: f,geé?+(T).

The embedding o, (T) — #_(T) is H-S iff it is 2-summable ([15]), i.e. iff there
exists a constant C > 0 such that
<C s Z ICfir 83412

Z<ﬁ,ﬁ
<3e>+<1

for any sequence {f;} < #,(T). Let H, — H_ be H-S. Then ([f, f11/* denotes the
‘negative’ norm: [f, fl. = sup |[f,gl|»):
e3(T)

lg, gl <1
};m So-< CY U fl-< C sup Zl[ﬁ,gh

{8, ylysl

=¢ sw Zi<ﬁ,g>+12 <C s Zl(ﬁ,g>+
(B-‘e’ s’) <1 <z x>+<l

for some constant C > 0 and any sequence {f} < #.(T), i.e. #,(T)— H#_(T)
is H-8. The converse statement is proved in the same way.

PROPOSITION 7.2. Let T < R? be an open bounded domain, and p > dj4. Then
the embedding Hy(T) ~ H_,(T) is H-S.

Proof. Unfortunately we could not find the proof of this fact in the literature
but we shall reduce the problem to the embedding H,,(T) — Ho(T") = L*(T),
which is known to be H-S under the assumptlons of this proposition (see e.g. [19],
p. 385 or [13], p. 336). Let T cll = {xeR%: 0 < x, < 2} and let {|/][, =
-4y fx)dx)'72 be another Sobolev norm which is equivalent to the norm
If II,, We denote by C% the set of all C®-functions on IT whlch can be extended to

“-functions on R* periodically with period IT, and by A, (T (H,(I), H, Hy, , «) the
Hilbert space completions of _@(T) @, cp, respectively) in the norm |I Sl By
Proposition 7.1, it suffices to prove that the embedding H,,(T) - H._ p(T) is H-S,
where H_,(T) is the dual of &, (1) If f& 2(T), then fe H,,(II) if extended so as

icm
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to be zero on JINT, TI7112 = @R TS, PP +1BIY, and
@2) [I712,= swp I(f,)P< (0™  sup

8e9(T) (gﬂ)=§!8,3|’<1

falle<

= Qn)" Z I(f, €™ 2A+ 18977 = [IFT12.5-
Let {f)}< @(T) be an O.N. basis in H,(T). We want to prove that
(1.3) leﬁlli; <o,
[

Now see that

Fix) = Qry™2 )" d(f,, &) (1+ B2,
[

is an O.N. sequence in 1?2,,,, (in fact, (Fy, F)zp = (fi, f)p = 6G—J), and (F;, F)
= [[fil|2p.x- As the embedding H,,, . — L*(IT) is H-S (a simple proof of this fact
can be found in [13], p. 336), 2 (Fi, F) < oo, which implies (7.3) by (7.2).

i

)Zj (F, ™) (1418 P gs|

xell,i=1,2,..

Remark 7,1. Unfortunately the H-S property of the embedding Hy,(T) — L*(T)
does not hold for T not bounded. For example, the embedding H,(R*) - L*(RY)
is not H-S for any p; take {f,,, n=1,2,..} such that o) = e""(1+|1,‘|1)-"/2

X 1¢o, 2m(t), where f denotes the Fourier transform of f. Then ( f;,, Sodp = S f,, f,,.(1+

+t]?) dt = 2nd(n—m) while (f, f,) = const and so Y (fy,f,) = co. Next we
prove Proposition 5.3:

PROPOSITION 5.3. Let T = R and let P, be an operator (given by (0.2)) with
constant coefficients. Then PY? is a continuous mapping from & (R%) (and DRY) to
P(RY).

Proof. By definition, -

Pof= 9 (~DPapD, Do) = DR;
e}, 18] <p

or, in terms of the Fourier transform,

Pof(t) = @ry? § i) P(dx, fe IR,

RAl
where P(x) = 2 (= 1)"”a 2(ix)**?. Now use assumption (A) to prove "that
e, 18] <2
(7.4) Cz‘(1+|x[2)" < P(x) < C(1+[x%)?

for some constants C;, C, >0 and all x € R%. In fact, according to (A),
1.5 Co(1-AYF,f) < Bofof) < C(A—AVS.S), fe a(RY)
as the norms || f|l, = (j”,f)’/2 and[[Fil, = ((1—2)"f, [}/ are equivalent (1191, p- 220).
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Rewrite (7.5) in terms of the Fourier transform:

16 G §1A0PRA+xrdx < [0 PPEdx < €4 [ 14D+ x?pdx
R R R
PO .

for all fe D(R?). But J(R") is dense in F(R?), hence (7.6) implies (7.4).

PROPOSITION 7.3. Let P be Friedrichs® self-adjoint extension of Py. Then D(P) =
Hy,(R%) and
&) Pf(t) = @m)2 { e™f() P(x)dx, feD(P).

Rd

Proof. By a theorem of von Neumann ([13], p. 108) we need to check the fol-
lowing facts: ‘

(1) P = Py;

) B is symmetric;

O R(P) = L2(RY;
where P is given by the right-hand side of (7.7) with D(l;) = H,,(RY), and P,
denotes the closure of Pg.

Now, ad (1), if {f,} = D(Po) = 2(R") is convergent in L*(R) to fe L*(R")
and Pyf, — g (in L*(R%), then

Rglﬁ—ﬁvaﬂxrzy"dm ¢ {1 A-fulrP2()ax

Rd
= Cl|P(fu=fmll* - 0,

ie. {f,}is a Cauchy sequence in H,,(R%). By (7.4), P is easily seen to be a conti-
nuous map H,,(R%) — L*(R%); hence fe D(P) and g =.Ff, i.e. P = P,.

Ad (2), apply Parseval’s idcintity to the Fourier transform in L*(R");

Ad (3); clearly f given by f(x) = g(x)P—(x) gives the solution of Bf = g for
every g € L*(R%), and fe H,,(R%).

PROPOSITION 7.4, D(P'?) = H,(R") and

n,m- o0,

(7.8) PUf(p) = (27.‘:)—41/2 S e"’f(x)Pllz(x)dx.

RY

Proof. Denote by Tf the right-hand side of (7.8) with D(T) = H,(R". The
same argument as above proves that T is self-adjoint (and clearly positive), Ele-
mentary computations show that P = T2 on H,,(R%), i.e. T is a self-adjoint positive
square root of 2. But such a root is unique ([8], p. 1247).

i Now to ez'ld the proof of Proposition 5.3, since the Fourier transform is a con-
;:i;c;ust?:pplig'ytl(lk") - #(R%), it is enough to check by the previous Prop-
* osition that such is the mapping f(x) - f(x)P*(x). But this i ious si

is a strictly positive polynomial. ® s obvious since £6)

icm
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