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Let X denote a real separable Banach space with the norm [||] and with the dual
space X*. By a probability measure u on X we shall understand a countably additive
nonnegative set function x on the class of Borel subsets of X with the property
that u(X) = 1.

The characteristic functional of u'is defined on X* by the formula

j0) = [eomu@)  pex?).
X

It is well known that the characteristic functional uniquely determines the prob-
ability measure. Moreover, it is continuous in the X-topology of the space X* ([1],
Theorem 6.2.1).

Given a linear operator 4 and a probability measure x on X, we denote by 4u
the probability measure defined by the formula Au(E) = u((4~*(E)) for all Borel
subsets E of X. In the study of limit probability distributions [6] I introduced the
concept of decomposability semigroup D(u) of linear operators associated with the
probability measure u. Namely, D(u) consists of all linear operators 4 on X for
which the equality

W= Auxv
holds for a certain probability measure ». The asterisk denotes here the convolution
of measures. Of course, D(u) is the semigroup under composition of operators and
D(u) always contains the zero and the unit operators. Moreover, D(u) is closed
in the weak* operator topology. It has been shown in [6], [7] and [8] that some
purely probabilistic properties of 4 are equivalent with some algebraic and top-
ological properties of the decomposability semigroup D(u).

In the case of real line X = R we can identify operators T,x = ¢x (x€R)
with the real numbers ¢ so that the decomposability semigroup can be regarded as
a subsemigroup of the multiplicative semigroup of real numbers. In terms of de-
composibility semigroups the classical result of P. Lévy ([4], Theorem 56) can be
formulated as follows: u belongs to the class L of limit distributions if and only if
[0, 1] < D(u). Further, we note that the concept of c-decomposability introduced
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by M. Loéve in [5] p. 334 is equivalent with the relation ¢ & D(x). Recently O. K. Za-
kusilo extended in [10] these investigations to the case of Euclidean spaces X = R
and obtained a new class of probability measures which in terms of decomposability
semigroups can be described by the condition 4 € D(u), where A is an invertible
linear operator with |]4]| < 1.
The main aim of this paper is to characterize isotropic Gaussian probability
measures by a certain geometric property of their decomposability semigroups.
Let u be a probability measure and 4 a linear operator on X. Then for every
yeX*, -
B0) = plary).
Consequently, A4 € D(u) if and only if

BO) = B(A*9)50)
for a certain probability measure » on X. By a projector P on X we mean a linear
operator with the property that P? = P. Further, by I we denote the unit oper-
ator on X.
Lemma 1. Let P be a projector on X and P € D(i). Then I— P € D(u) and

4 = Pus(I~P)p.

Proof. Since P e D(u), we have the decomposition
(€3] U= Py*v,
where » is a probability measure. Hence we get the formula Py = Pux Py, Con-
sequently, P,u P By, which implies the equation f;(y) = 1 in a neighborhood
of 0 in X*. But the last condition implies the formula B5(y) = 1 for all y € X* (see [2],
Proposition 2.3). Thus Py = J,, where d, is the probability measure concentrated
at 0 in X. Hence, in particular, it follows that » itself is concentrated on the subspace
(I-P)X. In other words, (I—P)» = ». Since Ou = d,, the last equation and (1)
yield the formula

(I-P)y = (I—-P)Pux(I—P)y = ».

Thus p = Pux(I—P)u and, consequently, I— P € D(u) which completes the proof.

In what follows by S, (r > 0) we shall denote the sphere of radius r in the
space of linear operators on X, i.e.

= {d: |l 4]] = r}.
LemMa 2. If S, < D(u), then for every pair y,, y; € X* with ||y,|| =

_ Le 1911 the
inequality
A <

a(r
holis |a(ryz)|

Proof. Let y,,y, €X* and ||y, || = ||y;|} = a. Without loss of generality we
may assume that a > 0 because in the case @ = O the inequality is obvious. Taking

x; € X with the properties ||x;|] = 1 and y;(x;) = 4, we define the linear operator
A by assuming

AW = Zyx%  (xeX),
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It is clear that |{4]] = r and, consequently, 4 € D(u). Moreover, 4*y, = ry,. Thus
there exists a probability measure v such that

B = Al ().
Since [#(¥)| < 1, we have the assertion of the lemma.
THEOREM 1. Suppose that X is infinite-dimensional. Then S, < D(u) if and only
if u is concentrated at a single point.

Proof. Let y e X*. By Wehausen Theorem ([9]) O belongs to the closure of

the set {z: |lz|| = -H—i—)l—L} in the weak topology of the space X*. Since X* is separ-

able in the X-topology, we can select a sequence zy, 25, ... tending to 0 in the X-
topology. Consequently, fi(z,) -1 which, by Lemma 2, yields |i(y)| = 1 for all
y e X*, This shows that x is concentrated at a single point.

We call a probability measure isotropic if it is invariant under all linear iso-
metries of X.

THEOREM 2. Suppose that X is finite-dimensional, dimX > 2 and u is not con-
centrated at a single point. Then S; = D(u) if and only if u is a translate of an iso-
tropic Gaussian measure and X is a Hilbert space under the norm || - |.

Proof. First we shall prove the sufficiency of the condition Sy < D(u). Let ¥
be a subspace of X with codimY = 2. By || - ||y we shall denote the norm induced
by ||- || on X/Y and by p the standard mapping from X onto X/Y. Evidently,
11p()|ly < |1x]| for all x € X. Let py be the probability measure induced by x4 on X/Y.
Then for every h e (X/Y)* the composition A o p belongs to X* and

@ fix(B) = ji(h o p).

Given u € X/Y with ||u|ly = 1, we denote by [1] the one-dimensional subspace gen-
erated by u.

By Hahn-Banach Theorem there exists a projector @, from X/Y onto [u4] with
[|Qully = 1. Thus for every xeX we have the formula 0.p(x) = cu(x)u, where
¢,(%) is a real number. Selecting an element x, in X with the properties [|x.|] = 1
and p(x,) = u we define the projector P, from X onto [x,] by means of the formula
P,x = ¢,(x)x, (x €X).Obviously, [Pl = [IQully = 1 and, consequently, P, € D(u).
Thus there exists a probability measure » on X such that

AO) = BEHY0O)  (yeX™).
Since for every h & (X/Y)*, P¥(ho p) = Q¥(h), we have, by virtue of (2),
fin(F) = Br(QE R (),

where vy is induced by » on X/Y. In other words, O, € D(uy). By Lemma 1 we have
also I—-Q, € D(uy) and

3 sy = Quptyr(I—Qu) iy«

Since codim ¥ = 2, we can select a pair u, , #, € X/Y with the properties |{u; |ly =
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Hluz)ly = 1 and u, € (I-Q,,) X/Y. Evidently,

XY = [w]@[u,].
Let ¢ be an X/Y-valued random variable with the probability distribution uy. Then
@] {=&u+&u,,
where &, and £, are real-valued random variables. For every pair ¢,, ¢, of real num-
bers we define the functional g on X/Y by assuming g(ciuy+cat2) = ti¢+1ye,
(cy, €3 € R). Then, in view of (3),

Eel@: %) = EelCdittab) o Foltiés. Feltata

which implies the independence of the random variables &; and &,. Setting ¢~

= |juy—u, ||y and
v, = a(uy —uy),

and selecting an element v, from (I—Q,;) X/Y with |2, ||y = 1, we have
X/Y = [o]@ [va].
Consequently, the random variable { can be written in the form
) £ = 0191 +1,0,,
where 7, and 7, are real-valued random varjables. The same arguments as in the
case of the pair uy, u, yield the independence of the random variables 7, and 7,.

Further, by the linear independence of v, and v, the coefficients @, , a, in the expan-
sion v, = a;u, +a,u, satisfy the condition

) a,+a, # 0.

Moreover, from (4) and (5) we get the formulas

aé —aé, _ £+,
ala,+a) ° T e +a;

Hence it follows that two linear forms &, +£, and a,& —a, £, of independent ran-
dom variables &, and £, are independently distributed. By Skitovich-Darmois The-
orem ([3], Theorem 5.1.1) each random variable &;, which has non-zero coefficients
in both forms, is Gaussian. By (6) we conclude that at least one random variable,
say & (k =1 or 2) is Gaussian. Setting y,(x) = ¢,(p(x)) for x € X, we infer that

N 2
YeeX¥ |Ipll = 1 and (ty) = Ees for every teR. Thus j(ty) = ei"""gim,
where m, o € R. Applying Lemma 2 for r = 1, we infer that |G| = [f(ty)] when-
ever [|y]] = |[tyc]] = |¢]. Consequently,

)2 = e
for all y e X*. Thus for every £ € R and y e X*
)2 = emivire
which implies, by the Cramér Decomposition Theorem ([5], p. 271),

M=

Ziy)jaes

™ ) = -
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In other words, the probability measure u is Gaussian. Regarding X in the equiv-
alent Euclidean metric, we have the standard representation of the characteristic
functional fi:

® ) = ez

where (-, -) is the Euclidean inner product, x, € X and B is the covariance operator,
i.e. a non-negative self-adjoint operator. We have assumed that u is not concentr-
ated at a single point. Consequently, o> > 0in (7) and, by (8), |[y||*> = ¢~2(By, y)
which shows that the norm || || on X* is induced by an inner product. Hence it
follows that the norm || - || on X has the same property. Thus X is Hilbert space

a2
under this norm. Further, setting fo(y) = e;l”’ ™ we get an isotropic Gaussian

measure on X. By (7) u is a translate of u, which completes the proof of the suf-
ficiency of the condition S; < D(u).

To prove the necessity of this condition let us assume that X is a Hilbert space
and p is a translate of an isotropic Gaussian measure. Then the covariance opera-
tor for u is of the form bI where b is a positive number. For any operator 4 € §;,
the operator b(I—AA4*) is non-negative self-adjoint and, consequently, can be re-
garded as the covariance operator for a Gaussian measure, say », . It is easy to verify
the equation

p= Auxy

where v is a translate of »,. Thus S; < D(u) which completes the proof of the
theorem.

It should be noted that the assumption dimX > 2 in Theorem 2 is essential.
In fact, the condition S; = D(u) in the one-dimensional case characterizes trans-
lates of symmetric probability measures. It is also evident that for any Banach
space X and for » > 1 the condition S, = D(u) characterizes probability measures
concentrated at a single point. It would be interesting to characterize all probability
measures 4 on a finite-dimensional Banach space X for which the inclusion S,
< D(u) holds for a certain number r € (0,1).
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1. Introduction

It is well known that, under certain regularity conditions, a diffusion process on
a manifold with boundary is determined by a second order differential operator of
elliptic type (possibly degenerate) plus a Wentzell’s boundary condition (cf. Wen-
tzell [11]). The problem of constructing the diffusion from a given pair of such
analytic data has been discussed so far by many authors. K. Sato and T. Ueno [7]
laid a fundamental route of construction in an analytical way and following it,
J. M. Bony, Ph. Courrege and P. Priouret [1] succeeded in constructing diffusions
in very general cases. In a probabilistic way, N. Ikeda [4] applied It&’s stochastic
differential equations to this problem and S. Watanabe [8] extended his idea so as
to cover more general cases.

In this paper, we will propose still another approach to this problem by con-
structing directly the excursions of the diffusion. Our plan is as follows: we prepare
two kinds of Poisson point processes on function spaces which we call Poisson
point processes of the Brownian excursions of the first and second kinds. Each point
of these point processes represents a Brownian excursion and by solving a stochastic
differential equation based on this excursion (which is an absorbing barrier Brownian
motion with an infinite entrance law) we can associate an excursion of the diffusion
to be constructed to each of Brownian excursions. Here, we make use of the space-
time relation of the Brownian excursion to produce the frequency of excursions
in proportion to the coefficient of the corresponding terms in the given boundary
condition.

The path. functions of the diffusion to be constructed will be defined by gluing
the excursion thus constructed and, in doing this, we need the so-called process
on the boundary. This is constructed by solving a stochastic differential equation
of jump type based on the Poisson point processes of Brownian excursions. Usually
stochastic differential equations of jump type, as discussed in e.g. K. Itd [5] and
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