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The aim of the note is to obtain a necessary and sufficient condition for the stab-
ility of infinite-dimensional linear stochastic systems and to show how this result
can be applied to the investigation of the stability of stochastic linear systems
with delay.

1. Preliminaries

Let H be a Hilbert space and 4, By, ..., B, linear operators on H such that:
(1) A is a generator of a semigroup (T})e, o on H,
(2) By, ..., B, are bounded operators on H.

Let (W )505 ..., Wso be independent real-valued Wiener processes. By a
linear stochastic equation we mean, in this paper, an equation of the form:

P
) dx = Axdi+Y Bixdwl, 1>0, xoeH.
s=1

A mild solution of equation (1) is a stochastic process (x,),o With values in H, con-
tinuous in the mean-square sense, such that x, is o(ws, ..., w!, s < 7}-measurable,
and that the following integral equation is satisfied:

p ¢
@ x = Tx+ Z §7._.B x.aw!
=10
for all ¢ > 0. A mild solution of equation (1) always exists and is unique {1].
If the operators B;, j = 1, ..., p are of a special type
Bj(x)=bj(cjsx)’ JCEH,j= 1=~-,P»

where b;, ¢; are given elements in H, then system (1) is said to be of the Lurie type.
In this case we denote operators B, shortly by &lc;.
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If for every initial state x, € H the corresponding mild solution (x);,o of (1)

satisfies
4+

E( S ]x,[zdt) < 4 o0,
)

then we say that system (1) is stable.

In this note we give a necessary and sufficient condition for the stability of
system (1) in terms of Liapunov’s equation (3). More concrete sufficient conditions
will also be formulated. From the necessary and sufficient condition, in the case of
Lurie systems, we deduce an effective criterion for stability, generalizing that given
by Jakubovich and Levit for finite-dimensional systems in [2]. We also give some
applications to stochastic delay systems.

In the Appendix we prove a general theorem on the spectral radius of a mono-
tonic linear transformation, which plays an important role in this note, and which
for matrices was proved in [7].

The results given here were only sketched in a previous preprint [9].

2. A theorem of A. M. Liapunov for a stochastic system
in Hilbert space

It is well known, see Datko [3], that:

The system X = Ax is stable, or equivalently: the semigroup (750 is stable,
if and only if there exists a bounded positive semidefinite operator P on H such
that

2(PAx, x)+(Qx,x) = 0

for all x € D(A4) and for some invertible positive operator Q.

The following theorem is a generalization of Datko’s result to stochastic sy-
stems.

TrEOREM 1. System (1) is stable if and only if there exists a bounded operator
P on H positive semidefinite such that

3) 2(PAx, X)+ Z (B} PBx, x)+(x, %) = 0
j=
Jor all x € D(A).

To prove the theorem we need the following lemma, which was proved in a
more general setting by Akira Ichikawa [5]:

LimMmA 1. There exists exactly one strongly continuous family (Q@))uso of
non-negative operators which satisfies the equation

¢ r
@ 00) = { T*t—o) [+ | BIO@B| Tt-v)dv, >0,
0 Jj=1

where S is a given non-negative operator on H and (T(z.‘)),>0 is the semigroup gen-
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erated by A. Moreover,
t

&) (@), x) = EY (x5, x)ds.
0

Proof of Theorem 1. Taking § equal to the identity operator I, we infer from
Lemma 1 that system (1) is stable iff the family (Q())eso is bounded. Let us assume

that system (1) is stable, then the operator 0= lim Q(z) is well defined and also
12k -+

+ 0

(S, (Tyx, Tyx)dt < (Qx, X) < + oo for all x € H, Therefore 4 is a stable gener-

ator and equation (3) is equivalent to

+ 00 P 0

©) P= § mrnat> { mrBrPBR T, P3o.
[} 0

J=T
Putting in (4) -+ + co and taking into account the monotonicity of (@D)>0
and the exponential decay of (73),s¢, We obtain

+ o0 P

+o0
0= mrraty | #8208 Tar.
[ Jj=1 0

Thus Q satisfies the conditions required in the theorem. To prove the opposite
implication assume that an operator P > 0 satisfies equation (3). Then by quoted

Datko’s result the operator A is stable. Consequently Z also satisfies (6). Let us
define

t P
Q) =0,120 and  0,.,() = § THe—v)[S+ D B} 0,(0) B T(—v)do.
0 =1 '
Then we show by induction that O > 0,.:(t) = 0.(1) > O,n=0,1,2 ... But

0(t) = imQ,(¢) is a unique solution of (4); therefore this unique solution is bound-

ed, and thus (1) is a stable stochastic system. This completes the proof.

COROLLARY 1. From the proof it follows that if system (1) is stable, then the
semigroup (Ty)s»o generated by the operator A is stable. Consequently (see [3]),

M ITy < Me~*',

Jor some positive M and w.

t> 0,

3. Formulation of the main result

The main result of the paper can be formulated as follows:

THEOREM 2. Assume that By = biley, j = 1,2, ..., p; then system (1) is stable
if and only if

(1) the semigroup (Ty)e»o is stable,
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() the spectral radius of the matrix D = (e pg=1,.rp>

+o0

®) dy =\ I(Teby, cPat,
0

is less than 1.

The proof of Theorem 2 will be given is Section 4.

We recall that a semigroup (Tt):»o is stable if (7) holds, and that the spectral
radius of D is equal to

#(D) = lim YD = infy/TID[ .
n n
Remark 1. By Parseval’s equality
1 + o0
b= 5 | IR PR, Kj= 1, .
-0

Here (R;) denotes the resolvent of the semigroup (Ty)i»o. In particular, for stable

semigroups
+oo

Ri= {| e#mar it Reazo.
0

Thus we can reformulate Theorem 2 in an obvious way, using the “frequency-
domain” framework as in [7].

PropOSITION 1. If the semigroup (T));» o is stable and

+@  p
§ D@t a <t for k=1,2,...p,
(=
then system (1) with B; = b;|c¢; is stable.
Proof. Let us introduce in R? thenorm: [x| = max(|xy|, ..., [%,]), X = (X, -es %)

€ R?. Then the linear operator corresponding to the matrix D = (di, Dk, j=1,...p
has the norm

»
D} = max ) |dy|-
k=T
D
Thus, if | D] = maxz |d,;] < 1, then the spectral radius of the matrix D is less

than 1. Obviously the condition |D] < 1 is equivalent to Z |d,y] < 1for k=
1,2, ..., p. This completes the proof.

COROLLARY 2. If for some positive numbers M, w > 0 and all t = 0

ITe] < Me—,
and if for every k = 1,2, ...,p
20
Il < —«——‘i{?_—m )
MY 2l
j=1

then system (1) with B; = b;|c; is stable.
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4. Proof of Theorem 2

The pro?f is a modification of the proof by M. V. Levit and V. A. Yakubovich [7].
Let us assume that system (1) with B; = bjl¢;,j= 1,2, ..., p is stable. By Corol-
lary 1, the semigroup (T);», generated by the operator 4 is also stable. Con-
sequently, for any bounded operator R > 0, the equation
2(PAx, x)+(Rx,x) = 0, xeD(4)

has a unique solution given by the formula

+o0

P= | T*RTar.

0

Thus equation (3) is equivalent to the equation

+ oo 3
© P={ 7| BrPB+1| T, P> 0
) 0 j=1
or, by using the special form of the operators B;, to
oo
(10) P= Q+L(b,,rb) T¥glgTydt, P> 0;

Jj=1

+ 0

Q denotes here the operator S T¥T,dt.
[

From (10) we infer thatfork =1, ...,p
P + o0
an (e, Pb) = (b Q)+ (b5, Ph) § 1(Tibu, <) et
j=1 [\
Thus the sequence x = ((by, Pby), .
equation
(12)
where y = ((b4, Qb,), ..., (bp, Qb)) is a vector with positive coordinates and D
is the matrix defined in Theorem 2. By Corollary 3 of the Appendix, D is a stable
matrix. This completes the proof of Theorem 2 in one direction. To prove the the-
orem in the opposite direction let us remark that if the semigroup (Ty)»0 1s stable
then the matrix D is well defined. If, in addition, D is a stable matrix, then equation
(12), with y = ((bl ,0by), ..., (b,, 0b,)), has a unique nonnegative solution, which
we denote by X = (X;, X3, ..., Xp)-
Let P be a positive definite operator defined as

P +o0
P= Q+ij S
=1 0

(b,, Pb,)) = y+D% = X,

., (b, Pb,)) is a monnegative solution of the

x = y+Dx,

T¥cle; T dt;

then _
((b.l) Pbl)! CREE]

18 Banach Center t. V
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and therefore
+00

P
* P= Q+Z(b,-,?b,) { T*cleyTidr.
0

J=T

Thus the operator P satisfies equation (10) and also the equivalent equation (3).
An application of Theorem 1 completes the proof.

5. An application to delay systems
In this section we apply Theorem 2 to systems described by a linear stochastic
equation with delay of the form:
0

dx(t) = S

—h

2

(13) AN(s)x(t+8)dt+ Y by, x(1)) dwl.

: =1

Here N() is a function of bounded variation from the interval [~£, 0] into
the space of » X n-matrices; b;, ¢;,j = 1, ..., p are n-vectors and (Wezos oy Wizo
are independent, real-valued Wiener processes. Under a very weak assumption
equation (13) can be treated as an equation of type (1) in the Hilbert space IM? =
R*XL*(—h,0; R"). Namely, let us introduce the following assumption:

ASSUMPTION 1. The operator A defined on

D(4) = {(a, 9); p e Wi(—h,0; R"), a = p(0)},
by the formula

0 -
o(0) § av@e(s)
(14) 4 =,
. P
? a5

is the infinitesimal generator of a Cy-semigroup on M? and the spectrum of 4, o(4) =
0
{a: det( ) e#dNGs)~ Al)=0}.
The following theorem is a special case of a result proved by Chojnowska-~
Michalik [2]:
THEOREM 3. Make Assumption 1 and define X(1) = (x(t), x,) e M?, where x(+)
is a solution of (13) and x, () = x(t+6) forall t > 0 and 6 € [—h,0]. Then (X(2) )0
is the unique solution of the equation
p 1
Xt = TXO+ ) | 11,5 X awl,
=10
where (Te)¢so is a semigroup generated by the operator A given by (14) and 'ﬁj(a, )
= (bf(c.i’ a): O)'
This theorem shows that the following definition is quite natural:
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System (13) is said to be stable if and only if for every initial condition X(0) e
— +® —
IM? the corresponding solution X(f), 1> O satisfies E V IX(0)dt < + 0.
0
+ 00

Let us remark that the inequality E S 1X,12dt < + 0 is equivalent to
+oo ’
E § |x())2dt < + 0.
0
As a corollary from Theorem 2 we obtain the following
THEOREM 4. Let us assume that Assumption 1 holds; then system (13) is stable
if and only if

0 .
(1) sup{Re; det(§ e#dN(s)— 1) = 0} <0,

~h

(2) absolute values of the eigenvalues of the matrix D = (e, Dr,j=1, ...ns With
the components ‘
+00

dj = § 162, cp)2a
1]

are strictly less than 1. Here (x50 denotes the solution of the deterministic delay -
equation ‘

0 .
i= | dN()x(t+s)
Zh
with the initial conditions
x@w) =0,
x(0) = b.

Jor wuel—h,0),

Remark 2. Assumption 1 is satisfied for many interesting delay systems (see,
for instance [4]). More explicit sufficient conditions can also be obtained by the
application of Corollary 2.

Remark 3. With an obvious modification Theorem 4 is valid for more general
delay systems described by the equation

0 )4 pr
dx(t) = ( § 2+ ON@s))dt+ Y by(es, xO)dwl + D b<es, x> dwd,
) -k = J=pH1

0

where ¢; € L*[—h, 0; R"] forj = p+1, v, p+rand €y, Xep = S/ (ei(s), x(t+s))ds.
Theorem 3 is also valid in this more general case.

Remark 4. Theorem 4 can be interpreted as a generalization of the results
from [7] to linear finite-dimensional delay systems.
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6. Appendix. A lemma on monotonic transformation
In the proof of Theorem 2 we have used a very special case of the. following the-
orem (see Corollary 3):
THEOREM 5. Assume that D is a linear transformation on a Banach space E, mo-

notonic with respect to a normal cone K < E. Let y be an element of K such that Sfor
a certain o > 0

{xeE; x| <1} c {xeE; —dy< x< ap}.
Then the equation
(15 x = Dx+y
has a solution x € K if and only if the spectral radius of D is less than 1; r(D) < 1.
We recall that a cone X is normal if and only if there exists a constant 8 > 0
such that u, v € K, u < v, implies [u| < Blv| (see [4], Theorem 1.2, p. 24).

+o0

Proof of the theorem. If r(D) < 1, then the series Z D"y converges in E and

n=0

defines the unique solution of (15). To prove the theorem in the opposite direction
we show first that the transformation, 2(z) = Dz+y, z € K, is y-concave, i.e. that

(1) for every z € X there exist positive numbers y and & such that

V< 2(2)< 0y,
(2) for every z € K and ¢ € (0, 1) there exists an s > 0 such that
2(tz) = (t+)2(2).
‘We check, for instance, property (2), which is equivalent to the inequality
1-1)— . .

D(2) € (—-8)—6 y. But if [pD(z)] < 1, # > 0, then nD(z) & yy. Therefore it is

sufficient to take ¢ > 0, which satisﬁesl < _(_lw—_t)_—-{;_
) £

From Theorem 6.7 of [6], p. 193 we thus infer that the iterates
n~1
2'0) = > Dy
=0

tend to x, the solution of (15), in the sense of the norm on E. Consequently | D"y — 0
asn — + oo. By virtue of our assumptions, if x € E, [x| < 1, then -y < X< Yy,
and thus —yD"y § D"x < yD"y. Therefore 0 < D'x-+ yD"y < 2yD"y. The nor-
mality of the cone K implies

|D"x| < |D"x+pD"| + |yD"y|
< 981Dyl +y|D"y|
< @B+1ylDy),

1D"| < (28+1)y1D"y| = 0.
This completes the proof of the theorem.

and we obtain
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COROLLARY 3. If E = R?, D is a matrix with nonnegative elements and y is a vec-
tor from R¥ with strictly positive coordinates, then the assumptions of Theorem 4 are
satisfied (here K = R%). Therefore the equation

X = Dx+y
has a solution x € RY. if and only if the matrix D is stable.

Remark 5. Corollary 3 was proved in [7] by a different method, based on
special properties of matrices.

Remark 6. Theorem 5 is also a generalization of Lemma 3.2 in [8].
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