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In this paper the rates of convergence in probability to zero of suitable centred
quadratic forms of random variables are investigated. The rates are expressed in
terms of real coefficients of random quadratic forms.

§ 1. Introduction

For each positive integer n = 1,2, ... let [ay(m); k,j = 11, [b;(n); k,j> 1] and
[eej(m); k,j > 1] be matrices of real numbers and let {X;; i> 1} be a sequence
of real random variables defined on a probability space (2, &, 2), not necessarily
identically distributed. In this paper we shall establish the rates of convergence in
probability to zero of quadratic forms

0] S@) = Kn)+Lm+M@m as n-—> o,
where
) Km) = Z g (n) (Xk —bu(n) ) (Xk - C"kk’(n) ),
k=1 )
0 j=1 .
® L(m = 2 > () (Y= b)) (% — s ()
j=2ik=1
and
w0 k=1 .
“) M) = > > 2y () (K= b)) Ki—eu ().
=2 j=1
In formulas (2), (3), (4) summation is taken only over those indices k, j for which
a(n) # 0.

To simplify the notation let us denote by Fy and F; the distribution functions
of X, and (X, —EX,) (if EX; exists), respectively, and let

©)] Fy) = fgrfP[lX;I =,
(© F'(y)y= f\;PP[IXa—EXiI = .

283]
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§ 2. Results

Investigating the asymptotic behaviour of the quadratic forms of random variables
S(n) as n — oo, one can prove that the following theorems are valid:
TreoREM 1. Let {X;; i = 1} be a sequence of independent random variables.
M IF0<t<1and YF)< M < 0 for 0 y < 0, then

0 (Z IQkk(n)It/2+ Z lakj(n)lt/(z._,))
k =y

holds as n — co with the coefficients b}cj ") = qj(m = 0.
@If0 <t <1, yF)—0 as y - co, and s}:]p]a“(n)[ -0 as n— w, then
yJ

@) PS()| > &l =

® PUSE)] > o] = 0 (D 1)+ Y lay(m)[14-1)
k k#Jj

holds as n — oo with the same coefficients by;(n) and cy;(n) as in (1).
TueOREM 2. Let {X;; i > 1} be a sequence of independent random variables.
W Ift=1and yFO) S M < 0 for 0 < y < 0, then

=0 (z | () |1 + z ’akj(n)lm/“—t))
k k#j

holds as n — oo with the coefficients

©® PS@) > ]

1
a7

(10) by = cym) = (1—8y) |  xdR(),

\—a“;n)]’/“
where 0y; denotes Kronecker’s symbol.
@ Ift=1,yF(y) - 0 as y - o, and supla;(n)] — 0 as n — oo, then
kJ

(11) PUSE > e] = 0 (D I 24+ Y layy () 40
k k]

holds as n — oo with the coefficients byy(n) and cy;(n) given by (10).

THEOREM 3. Let {X;; i > 1} be a sequence of independent random variables.
MIfl<t<2aamdyFO)S M < ooforO ¥y < 0, then (9) holds as n — oo
with the coefficients by;(n) = EXy and cyy(n) =

@I l<t<2, ¥F()>0asy— oo and sup!akj(n)l — 0 as n— oo, then
(11) holds as n — co with the same coefficients by;(n) and ¢y (n) as in (1).

THEOREM 4. Let {X;; i
Ift=2and yF(y) <

> 1} be a sequence of independent random variables.
M < © for0 <y < o, then

(12)  P[S@)| > e]= (Z[akk(n)]‘/z+Zakj(n)(ak,(n)-—loglak/(n)[)2)
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holds as n — co with the coefficients '

1

lawlm)| 112
(13) bur) = —culn) = ¥dRx)"”,
!”kk;”)!”z
bij(n) = EXy, ciy(n) = EX;  for Kk # J.

If2 <t <4and ¥F()) < M < 0 for 0< y < oo, then
a4 PISC)| > ] = 0D law@™+ Y ay(m)
P2 Py
holds as n — oo with the coefficients

bu(n) =
byy(m) =

Ift=4and yFO)K M < 0 for 0 <

—cu(n) = (EXD)'?2,

(13
EXk, ij(n) = EX] for k #]

¥y < 0, then
o (Z afi(r) (abe(n)—log|aw (m)| )+ Z afj(n))
% =

holds as n — co with the coefficients by;(n) and c,;(n) given by (15).

(16) PLS()| > €] =

§ 3. Proofs

The proofs of all the theorems are based on the same method. Therefore only the
exact proof of the first theorem will be presented here. However, at the end of this
section short comments connected with the proofs of Theorems 2, 3, and 4 will be
given.

Proof of Theorem 1. (1) To prove the theorem it suffices to investigate the asymp-
totic properties of K(n) and L(n) as n — oo, because M(n) has similar asymp-
totic properties to those of L(n). By using random variables Uy (n), where

0 if  faw(m)]'? Xl > 1

1 U,(n) =
an k) {Xz i )] <1,

the following estimate can be obtained:

(18)  PIK()| > & < ;fmakk(n)l”sz > 11+P[lk2akk(n> Ue(r) > ¢
It is easy to observe that '

(19) anakk(n)vﬂlxk > 1< ZFaakk(n)l-M) < MZ () 2,

which proves that the first term on the right-hand side of (18) fulfil assertion (7).
To determine the upper boundary of the second term, let us compute the expected
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value of the random variable |Uy(n)|. Integrating by parts, one can state that

|aw(m)] =172
(20) E|Um] = x2dF(%)
= law(m| =
Jakx(m| =142
= — (@) P F(— o))+ Fiy(—x)dx?
0
lai(m)| 112

+ (aB() )2 Fi(law |~ )+ — Fi(x) dx*

|axiln)| =22
< (1= Fi(%) + F(— ) )dx?

0

lag )| -2

< 2xF(x)dx < ;ﬁ @ () |22

0

Thus, applying Markov’s inequality, we get

PN antrvien] > o)< %Z ) EI T3 (1)
k

<ot Z ()

Let us now establish the asymptotic behaviour of L(n) as n — co. The following
inequality holds:

@) PILE)| > dl< Y (Bllay@e=21% > 11+ Pllay @)% > 1)+
k<j

@D

+2 Uz‘“kf )Yy (n)ij(n)l > a] ,
k<j .

where

.

£ a1 2 1
if a0 < 1,
0 if ey 2 1
Zyi(m) = 1/@2=1 k<i
X, if lay@l X1 <1, k<.
By analogy to (19), it is easy to observe that

S (PLa @I X,] > 11+ Pllawy () 152, > 11)
k<j

Yiy(n) = {?Yk

—

@3)

-

)]

< 2)" Fllay()]=1%-") < ZMZ g () 112"

k<)
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Since
lag (m] 1121y
ElYy(m)] <

(25) Fx)dx <

IM @ (n) | ¢~ DIz=n
b —t

and since E|Z;;(n)| has the same property, we have

09 P[> aut¥umzim
k<j

1
> < ;‘}: 450 E B4y () | Zag )]

M? ‘
< ST L 5 lag () eI+,
therefore (7) is proved.

(2) At the very beginning an inequality will be derived on which the next steps
of the proof are based. Let = > 0 be an arbitrary real number. Under the assump-
tions of the theorem, m;, = supy‘F(y) — 0 as 71— oo. Thus, choosing an H such

that for each & > Hm,,(l——t)‘1 < 7/2, and then a T > H such that HT*-! < 7/2,
one can obtain the inequality

T 0
@n =2 yFy)dy < T [ FG)dy
0 T
T
< HT* 4171 SmHy“dy <.
H

If n > ny, then (sup|aw(n)|)~*/* > T. Therefore, taking into account (18), (19), (20),
&

and (21) one can obtain the inequality

|axi(n)| =472

PIKG) > e < Y F(laul) )+ Y lau@] | 2FG)dy
k k

+27’Z RO

2= > T, and on the strength of (22),
(24), (25), and (26) the followmg mequahty holds:

(28)

T
< }__,7 ()

Similarly, n > n, implies that (sup]ak,(n)\)

(29) Pl|L(n)| > &] < Z 2F (Jay(m) |- 1129 ) +

k<}
laestml =12 ~1)

> gl F(xydx)

k<)

72 iz~
<7 D a4 TS gy e b,

k<j k<j
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Since 7 is arbitrary, the left-hand sides of (28) and (29) fulfil assertion (8), so the
proof of Theorem 1 is completed.

Proving Theorem 2 let us note that almost all the considerations connected with

the expression K(r) from the proof of Theorem 1 remain valid. To estimate the prob-
ability P[|L(n)| > & as n — oo, one must cut random variables X}, and X; in such
a way as to make the expected values of new random variables equal to by;(m) or
¢;(n), respectively. Having such random variables, it is very easy to obtain assertion
(9) and (11). Only small changes are needed in the proof of Theorem 1, so the de-
tails will be omitted.

Tn the proof of Theorem 3 the following fact is very useful: for # > 1 under
the assumptions of the theorem expected values of all the random variables X;
exist and are bounded by the same constant, and, moreover, function F’ has the
same asymptotical properties as F.

The assertion of the theorem can now be obtained without much trouble: in
all the inequalities it is only necessary to put function F' instead of F, and expression
P[|L(n)| > &] has to be divided into three parts, of which one will contain the sum
of the expected values of cut random variables multiplied by the coefficients ay(r).

To prove the last theorem one may apply the same method as that used in the
proof of Theorem 1. The only important change is the estimate of the modulus of
expectation of cut random variables in the consideration of P[|L(n)| > &]. All the
random variables are now centred at the expectation, and thus the modulus of ex-
pectation of cut below — o and above « such random variable (for example Xy — EX)
is bounded by the sum of integrals

-0 o0

| § xarico+ § xdF,;(x)].

o % ‘
It is also necessary to emphasize that for ¢ > 2 the expectations of squared random
variables are bounded by a certain constant. By using the above facts the proof
can easily be completed.

§ 4. Concluding remarks

Rohatgi ([4]) was interested in finding sufficient conditions under which a martin-
gale quadratic form converges to some proper random variable; he did not describe
the rate of convergence. Hanson and Wright ([3]) investigated the exponential rates
of convergence in probability to zero of random quadratic forms. Griffiths, Platt
and Wright ([1]) established the algebraic rates of convergence in probability to
zero of random quadratic forms. However, they introduced in their paper ([1]),
besides F, the function G(¥) = :L}pP[]XkAG[ > y], and made some additional as-

sumptions about it. In the above theorems there is no assumption made about G,
and, moreover, if (1) = 0 for k # j, then the results presented here reduce to
those in [2] for weighted sums of positive random variables.

Let us now consider the following simple example:
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Let Xy, X3, X3, ... be a sequence of independent random variables such that
P[X; =1]1= P[X; = —1] = 1/2 and let X,,X,,... have the same normal dis-
tribution A°(0, 1). Moreover, let

@) = 1n
ay(n) =0 other indices k, j.

Then S(n) bas a normal distribution 4°(0,1) and P[|S(n)| > ] +» 0 in spite of
s}g})lau(n)[ —0asn~ oo and 'F(y) - 0 as y - oo for each fixed ¢ > 2. This is

if 2<j<n?
and <js n?+1,
for

).

the reason why in Theorem 4 only the estimate O(.) can be obtained.

A similar example can be constructed for # > 4. Namely, let us consider a se-
quence Xy, X,, ... of independent, identically distributed random variables such
that »'F(y) » 0 as y — oo for some t > 4 and EX%—(EX?)? = 02X? = 1. Fur-
thermore, let !
ag(m) = 1/n if 1<k<n?
and

a,;(m) = 0 otherwise.
Then S(n) satisfies the central limit theorem, and thus P[|S(n)| > ] + 0 as n — co.
Consequently, for ¢z > 4 the best possible rate of convergence of P[|S(n)| > €] to

zero as n — oo is always
o> atm+ Y ab).
3 k#j

At the end of these considerations it is worth to mentioning that in the case
0 < t < 2 the estimate of the rate of convergence in probability to zero of random
quadratic forms S(n) can also be obtained for dependent random variables; indeed
under similar assumptions to those in Theorem 1 this rate is equal to

0(;:[%@)1'/2) or o(;m,»(n)r“),

respectively.
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