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An optimal rule for a continuous time generalization of the so-called secretary prob-
lem is investigated. A lower and upper bounds as well as asymptotic of a sequence
which determines the best strategy are obtained.

1. Formulation of the main resnlts

In papers [1], [2] a natural generalization of the “best choice problem” was cone
sidered. This generalization called an “apartment problem” was as follows. A man
has been allowed a fixed time T in which to find an apartment. Opportunities to
inspect apartments occur at the epochs of a stationary Poisson process of inten-
sity 2. He inspects each apartment immediately the opportunity arises, however
he must decide at that epoch whether or not to accept the apartment. At any mo-
ment, he is able to rank a given apartment amongst all of those inspected to date.
The man’s objective is to maximize the chance of selecting the best apartment from
those (if any) available in the interval [0, T]. Let us number the apartments in the
order they are inspected, then the following rule is optimal (see [1], [2]):

Select the first apartment that is better than all .preceding apartments and
which index k and the epoch # it was inspected satisfy

T—t < yfA.
For every k = 1, 2, ... number y; is the unique solution of the equation:

+ 00 -+ 00 1
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Since the optimal policy is directly expressed in terms of the solutions of the
transcendental equation (1), therefore it is desirable to tabulate the numbers y,

as well as to investigate the asymptotic behaviour of the sequence (3,). A correspond-
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ing table was given in [2]. The asymptotic properties of y. are the scope of this

note.
The main results of this note are the following two theorems.

TrEOREM 1. Let yy, k = 2, 3, ... be the unique solution of the equation (1); then
(= 1)(k—1) < 7 < de((e—Dk+1).
TrroreM 2. Let () be the sequence of the solutions of the equation (1); then

.
1 2 e 1.
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_The exact value of the limit in Theorem 2 was suggested to us by numerical
results reported in [2].

2. Proof of Theorem 1

The proof will be given in two steps.
Lst step. For everyk = 1,2 ..., %> (e—=1) (k~1). Let us fix k > 2 and let ¢
be a continuous function defined on [0, +o0] as follows: @ is a linear function on
1
k+1

for n= 1,2, ... By direct computation we check that ¢ is an increas-

every interval [n,n+1], n=0,1,...,9(0) = 0 and @) = 71€+ + o+

1
TGS
ing and, concave function. Moreover, multiplying equation (1) by y* and taking
’ »

) yr
into account that {w+*-1dy =
0 n+k

the following equations:

we obtain that (1) is equivalent to every of

> ¥y -+ 00

7
0y k-1 = k—1
() §e utdu = §u ( 2 T q:(n)) du,’ y>0,

n=0

¥
et du = S eu* = E(p(£,))du,
0

3 y >0,

Oty

In the latter equation £, denotes a random variable with the Poisson distribution
and mean value u > 0. Monotonicity of ¢ implies that the function %: w() =

E(p(&,)) is increasing. Consequently, if y = y, is the unique solution of (3), we
have

» »
fertdu < p() { et du,
0 0

thus 9(y) > 1. From Jensen’s inequality we obtain
p0) = E(p(&)) < 9(EE)) = o)

and we see that also @(y) > 1. Let z = z, be a natural number such that ¢(z)
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< 1 < @(z+1). Since for natural numbers n, k} 2.we have ln—% < —llcﬁl— ot ! I
n—
‘< In »n_l , therefore
k—1
@ (e—D(k-1) <z < (e~-1)k.

This gives the required inequality y > (e—1) (k— 15.
2nd step. For every k = 2,3, ..., ¥ < 4e((e—1)k+1). With the same nota-
tion as above equation (1) can be rewritten as '

1 x" 1
® Y )i =Y -0 x>0

ner

If x <y = yx, then the left-hand side of {5) is bigger than the right-hand side of (5).
Thus, to finish the proof of Theorem 1 it is sufficient to prove that for x =X
= de((e—1)k+1) the opposite inequality holds.

We show even more: form =0,1,2, ..., 2,

-m 1 Ez+m+l
m)! < Frmyz+2 G l)m
Taking into account inequality (4), as well as the definition of the number z, we
obtain that k+z+m+2/k+z—m < 2e—1+2/k,
(1-p—m) (ple+m+2)~1) < (k+z+m+Dfk+z+m " .
< 2e—-1+41/k, ’
(+m+2)/(z—m)! < (2z422"*2
Thus (6) holds.if for m = 0,1, ..., z
o) Qe—1+1/K) Qe—1+2/k) Qz+2)2m+2 < X2m+2

and therefore certainly holds for x = 4e((e¥1)k+1). The proof of the theorem
is completed. L

1 per 1
© ———“k+z_m(1*‘P(Z—m)) (Zx_ (z+m+2)—

3. Proof of Theorem 2

The inéquality lim 2% > e—1 follows from Theorem 1. To show that Iim —yki
rore K Jem 400
< e—1 we shall need the following lemma:

LeMMA. There exists a number C > 0 such tht for every x € R and A > 0,

A C
) il —
® o 3 )eel<
kgi+xyi o
where ‘
D(x) = V%—ZT—T; _Sw e—nﬂ/%ﬁ,_
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Proof of the Lemma. Let n and m be numbers such that 2 = »m and n is natural.
Let - '

Dy(x) = — - < x|, x€R,

P( E+ oo +E—nm
nm

where £,, &, ..., &, are independent random variables with mean m and the Poisson
law. From Berry-Essen’s theorem [3], p. 480, )

33 E|f;—m]?

vy ]/n(E(E —m)2)3/2 .

Since Ef=m, E& =m?4+m, EE =mP+3m>+m, therefore E|£—m|3
E(£,+m)® < Cm(1+m?) for some positive C and E(§,~m)? = m. Thus

|Pu(x) - B(¥)| <

33 Cm(1+m1)
[ D(x
12.-06)| < T ‘
< B+ @)
Taking n — + 00 we obtain (8) with C = —3—3— C. Thls ﬁmshes the proof of the
Lemma.
If fim —k— > e—1, then for some a > e—1, the set K = {k; y > ak} would
k—++o0
be infinite. Since
1 1 {1 for nzz+l1,
FTroe T k+n—1 > In(I+4)=a>1 for n>ak,

therefore for y = y; and k € K we would have

¥y 1 ¥y 1 AP
n' nt+k = > ! ntk +“£_|7tT n+k’
(9) z<ngy >y

L n' n+k 2 (a=1): Zn' Ttk

Let b be a number such that y, < bk for all k (by Theorem 1 such a number
exists). Then from inequality (9) we obtain for y = y;

kzy" > (o= 1)2bk+k Z ‘y‘:

<2bk

Thus, there exist numbers § < 1 and y > 0 such that for y=»,kek®

SN e S

n<fy y<n<2y

Since y = y, = + © as k> + o0, k e K, applying the Lemma we obtain
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N
n!
n<fy
- »yoov
ve” }: W
r<ns2y
This contradicts inequality (10). The proof of Theorem 1 is completed.

Remark 1. Some weaker est:matlons than those formulated in Theorem 1 were
announced in [1].

that

Remark 2. The proven theorems suggest that the following strategy:
Accept the apartment inspected at epoch ¢ and with an index k if
(1) the apartment is better than all preceding,
(e—=Dk
T

(2) the residual time 7'—¢ is less than

is almost as good as the optimal strategy.
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