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§ 1. Introduction

Many types of stochastic partial differential equations, some delay equations, and
certain filtering problems have a natural interpretation through infinite-dimensional
stochastic differential systems with an unbounded operator. This is the motivation
behind considering stochastic evolution equations in a Hilbert space. Such equa-
tions with state-independent noise have been studied in many papers, for example
in [2], [3], by the Lions approach [10] and in [1], [5], [6], [12], [16], by a semigroup
approach [8].

We develop the second approach to the study of time-invariant stochastic differ-
ential equations in a Hilbert space H, with state-dependent noise. The system
under consideration can be formally written as

dX, = AX,dt+dM(X),,
® Xo=¢, telo,T].
(Here A is the infinitesimal generator of a semigroup T; on H and .#(-) is a trans-
formation from a space of stochastic processes into a space of H-valued martin-
gales.)

Four types of interpretation of the solution of equation (m) are possible in
the semigroup approach context: ’

t
(1) strong solution: X, = ¢+ AX,ds+#(X),;
", . 0
t

(IX) weakened solution: X; = {+4 ‘S)Xsds-i-.,/{(X),;

(II1) mild solution: for any y € D(A*) (domain of the adjoint of 4)
t
X, ) = (L, py+ Ke, A*ds + M (X, 73
i

t
(IV) mild integral solution: X; = T;{ +§ T, sd#(X),.

[53)
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In studing these equations we use the recent very nice results on integrals w.r.t.
Hilbert space-valued martingales due to Metivier and Pistone [12].

Making use of a certain generalization of the Fubini theorem (§ 3.2), we prove
in a straightforward manner the main result, namely that the solutions (II), (III)
and (IV) are equivalent (§3.3).

Then in the case of a constant transformation .# we obtain the following co-
rollaries (§ 3.4.1): )

(1) uniqueness and existence theorem for equations (II) and (III) (Let us note
that for (III) we get uniqueness in the class of progressively measurable processes
with trajectories belonging to L*([0, T], H). A similar but weaker result (uniqueness
in the class of progressively measurable processes with continuous trajectories) is
due to Vinter [16].);

(2) a uniqueness theorem for equation (I);

(3) under some assumptions—a theorem on the existence and uniqueness of
solutions of the strong equation (), i.e. some results obtained by Curtain and Falb
[5], Metivier and Pistone {12].

In general the equivalence theorem provides motivation for considering the
mild integral equation, which in some situation is more convenient than equations
(@, (D), (II). Therefore this theorem may also be important in the study of certain
stochastic control problems or of the stability of infinite-dimensional stochastic
models ([17]). Similar motivation underlies the “integral equations method” in the
study of certain stochastic partial differential equations in [15].

In the case of nonconstant () we turn our attention to stochastic systems
with state-dependent Gaussian white noise. Existence and uniqueness results for
such systems (even in the time-varying case) are also obtained by Pardoux [14], who
uses the Lions aproach. But for time-invariant linear equations the assumptions
in [14] are stronger than ours. (They imply that 4 is the generator of a semigroup
arrising in connection with ‘a coercive bilinear form.) In the spirit of the preceding
remarks the second main result (§ 3.3) is a theorem about the existence and uni-
queness of solution of a suitable mild integral equation. This theorem is an ana-

logue of certain well-known results for R™valued stochastic equations. As a corollary -

of the main theorems, the existence and uniqueness of solutions of (I1) and (II0) as
well as the uniqueness theorem for (I) are obtained (§ 3.4.2). Some sufficient condi-
tions for the existence of solutions of (I) are also supplied (§ 3.4.2).

The results of this paper may be applied to linear stochastic delay systems

(0171, [4)).

Acknowledgements. I would like to thank Dr J. Zabezyk for helpful discussions
and suggestions.

§ 2. Preliminaries

ASSUMPTION 1. Let H, G be real separable Hilbert spaces, We shall denote the

scalar product and the norm by ¢, -> and |-, respectively.
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Z(H, G) is, as usual, the space of linear bounded operators: H -» G. The oper-
ator norm will be denoted by |- |[.

Z,(H,G) =« ¥(H, G) is the space of Hilbert-Schmidt operators, with the
Hilbert-Schmidt norm denoted by || - ||us.

Let [us recall that every Be %,(H,G) has the representation: B(h) =
Zz,xh ey f;, where (e), ( fj) are orthonormal bases in H, G and ||B||3s

= Z[lulz

2.1. Operator-valued functions-measurability and integration. Since we shall con-
sider operator-valued functions (or processes), the following two types of measur-
ability will be useful:

DEerFINITION 2.1, Let (S, &) be a measure space and f: S — Z(H, G).

(2) f will be called measurable (or strongly measurable) iff it is measurable
w.r.t. the operator topology in Z(H, G).

(b) f will be called point-measurable iff for any h € H f(h) is measurable (strong-
ly ~ weakly as G is separable), equivalently Vie H f(B): (S, %) — (G, By).

Strong measurability is not very convenient to work with. The space
(.? (H, G, |- ||) is, in general, not separable and so strong measurability and weak
measurability do not coincide. Moreover, many % (H, G)-valued: functions are not
measurable but only point-measurable. For example: If (T3):»0 is a Cy-semigroup
which is not continuous in the operator norm on 0, cof, then (T;) is not strongly
measurable.

Remark 2.2. If f+ (S, &) = £,(H, G), then, under Assumption 1, fis measur-
able w.r.t. HS-topology iff f is point-measurable.

Proof. = is obvious.

<«: It follows from the very definition of HS-norm that [|f]lus: (S, %)
— (R, B). Since ¥,(H, G) is separable, this implies the measurability: f: (S, %)
- (Z2(H, &3, By ,)-

This is the reason for using the HS-norm of operators here.

We shall often want to integrate point-measurable functions; then the following
definition will be needed:

DErINITION 2.3. Let ¢: (R,B) - £(H, G) be point-measurable and such that

sup { [y (A) ds < + oo.
|Al=1p

t t
Then the integral in the Bochner sense, § ps(H)ds exists Y h e H. We define ‘S)rp,ds‘
0

as follows:

vheH (pds) ) = { gy as.
0 0
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Then

t

sup § gy (h)  ds.

. 11
‘S)%dse.?’(H,G) and H§q)stH<[h|slo

In connection with Remark 2.2 we have the estimation

H (p;ds“Hs H‘Ps”l—lsds + c0.

‘ H
It is obvious that if @ is strongly measurable and {(|g,||ds < oo, the integral so
0
defined coincides with the Bochner integral.

2.2. Semigroups of operators. Let (I,),», be a Cp-semigroup of operators
belonging to L(H, H) (i.e. Tyos= T, Ty = Ty~ T, and Vhe H |Tth—h| — 0 when
t - 0), with 4 as its infinitesimal generator. Certain properties of (I}) and 4 are
mentioned here. To get acquainted with the semigroup theory the reader is referred
to [8].

24, If T' < oo, then sup ||T3]] < + oo.

1€[0, T]

2.5. A is a closed operator.

2.6. For any n = 1, 2, ... the domain of 4"(D(4")) is dense in H.
2.7, For h € D(A) define the graph norm:

|hlpeay = (A1 +|ARI})H2,

Then [-|p4 is a well-defined norm in D(4), and it follows from Assumption 1, 2.5

and 2.6 that (D(4), |-|p) is a separable Hilbert space. This space will be denoted
by D.

2. 8 Yt T(D(A)) < D(4) and for he D(A): T,dh = AT;h.
29. Vhe D(4) SAT(h)ds = Th—h.

2,10. D(4) is a Borel subset of H and A4: (D(A) By |D(A)) —+ (H,By). Con-
sequently, B, = By|D(4).

T
2.11. Let f: [0, T]— D(4) be measurable (see 2.10) and § [/ pepr ds < o0.
Then, for any ¢ € [0, T,
t " t
{A9)dseD() and {4f)as = 4{f)as.
14 ] 0
2.12 (an extension of 2.9). For any h e H,

§Ts({1) eD(4) and 4§ T,(h)ds = T,(h)—h.
1]
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2.13. Under Assumption 1 the adjoint semigroup (77*) is also a C,-semigroup
on H, with A* (the adjoint of the operator A) as its infinitesimal generator.

2.3. Separable Hilbert space-valued martingales.

AsSUMPTION 2. Let (2, #, P) be a complete probability space on which is
defined an increasing and right-continuous family (#,);», of complete sub-o-
algebras of #.

2 is, as usual, the class of predictable rectangles on R, X2, i.e.

Is, t1xF, Fe#, s<t,
~ {0} xF, Fe#,.
By 2 we denote the predictable o-field. It is known that # = ¢(%). Let

where
where

M2, r(H) = {M: H-valued, right-continuous martingales
adapted to (%) such that M, = 0; E[My|} < o0}.
We shall recall some facts about H-valued martingales from [12].

THEOREM 2.14 (see [12], th.1). Let M € M, r(H) and let i be Dolean’s meas-
ure of |M|*> (i.e. a measure on P such that on R: A(Vs, t1XF) = E[ye(|M,|*—
—|M®)]). There exists a unique & (H, H)-valued, point-predictable process Q such
that

(@) Q(s, w) is a nuclear, positive, symmetric })perator with TtQ(s,w) = 1 1 a.e.;

() Vs, t1xFe® E[ys(M,—M,)%2 = § FQ(s, w)da.(Y)

£
The process Q will be called a covariance process of the martingale M.
By the previous theorem and Remark 2.2 the following class of processes is
well-defined: .

A(M; H, G) = {W( +, ) ¥is an Z(H, G)-valued, point-predictable

v

) 12
process such that [[¥]]4, f( S |- QmHﬁst) < oo},
Qx[0,11
and || ||, is a prenorm.

The following two propositions have also been proved in [12]:

PrOPOSITION 2.15. Let & be a class of £ (H, G)-valued, strongly predictable,
step processes, i.e.

ped Iff @ = Z%]sl,mxm(é‘: w)p,, where s, t]xXFieZ.
j=T

Then & is dense in A, in the prenorm |||,
. t
PROPOSITION 2.16. For any ¥ € A, the stochastic integral § ¥(s, w)dM, is a well-
0
defined G-valued process such that

(*) The customary notation is used; let he H, g € G; then h®g € Z(H, G) and (h®g)(x)
£ <hy xYyg for x € H.
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t

(a) § W(s, 0)dM, is aright-continuous martingale (continuous if M, is continuous),
0

©) Eff wa = 1211

Here is an important example:

ExampLE 2.17. Let (W,);»o be an H-valued Wiener process (see [2], [5] for the
properties of W). In this case 2 = IX.P (where / is the Lebesgue measure on R,)
and Q(s, w) = Q is a constant covariance operator. Then Q has the representation
0 = Y ae,®e, (where o are eigenvalues of @, o; > 0, D% < o and {e)} is the

o0

orthonormal basis in H, composed of eigenvectors of Q) and W, = 2 ]/ oy ble,,
i=1

where b are independent real-valued Wiener processes.
Further,

4(W; H,G) = {¥': £(H, G)-valued processes, point-progressively
00 t
measurable, such that [|¥]|3, = Z“‘ES |Pie)|?ds < + o},
=T
and
t

{w.aw, = iVZSW,(ei)db:,
0

0 =1
where this series is convergent in L2(f2). Let us remark that

218. If ¥: [0, T] - %(H, G) is a point-measurable (deterministic) function,
then it is of course point-predictable.
219. If ¥ is point-predictable and  sup
(4, 0)e[0, T x 2

¥e Az and |[P)13, < sup ||¥(r, w)||2 - E|Mq)>.
ta

I¥P(t, w)|] < + o0, then

2.20. Let (T) be a Co-semigroup of operators on H. It follows from 2.4, 2.18,
t t

and 2.19 that (S’Tde, is well defined. Moreover, the process (S T,_de,)‘,o has
[1]

a progressively measurable modification (see 3.13).
The proposition below, which follows from 2.5 and 2.7, is a stochastic analogue
of the semigroup property 2.11:

PROPOSITION 2.21. Let D be the space defined in 2.7 and let ¥ e A.(M; H, D),
Then

t t 1
\P.dM,eD(4), AV e A(M;H,H) and A\¥,aM, = |4¥,au,.
0 0 0
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§ 3. Stochastic evolution equations with state-dependent moise

3.1. Stochastic equations with noise transformation. Four types of interpretation.

AsSUMPTION 3. Let the finite interval [0, T] = R be fixed.

AsSUMPTION 4. (Ti):s0 is @ Cp-semigroup of operators on H, with the infini-
tesimal generator 4.

ASSUMPTION 5. Let { be an H-valued, % ,-measurable random variable.

DEFINITION 3.1. Noise transformation # (). Let B be, as before, a Borel o-field
of subsets of [0, 7] and let

A = {H-valued, progressively measurable w.r.t. (BX%,)s0 processes}.
By #(-) we denote a mapping from some subclass A, =" 4 into M2, r(H),
having the following property: if Vte [0, T] X, = X{ w.p. 1, then #(X") = #(X).

Under Assumptions 1-5 we shall consider a stochastic system in H which can
be formally written as (w). The following four types of interpretation of this system
are possible:

DEFINITION 1. An H-valued process X is a strong solution of (m) iff

@L1) Xe Ny

X:w)eD(4) foraa.t,

L.2) w.p. 1{X_(w)eL1([0,T];D); ¢

(I.3) VE30, P(Q) = 1,VweR, X,(w) = tw)+§ AX,(W)ds+ M (X)(W).

0
DermNmioN IL An H-valued process X is a weakened solution of () iff
(L.1) X e No;
w.p. 1 X.(w) e L'(I0, T]; H),
1.2 ‘
a2 Vtwp 1 SX,(w)ds e D(A4);

0
13

(I13) V39, P(2) = LVYweR, X,(w)= C(w)+A§X,(w)ds+./{(X),(w).
DerFiNiTION III, An H-valued process X is a mild solution of (m) iff

(IIL.1) X € Ho;

(I1L.2) w.p. 1 X.(w) e L*([0, T]; H);

(.3) ViVye D(AMAL,,, P(Q,,) = LYwe®, , (LMW, = W), »+

+ g (XL (W), A*p>ds +{MX)e, Y.

DerNITION IV. An H-valued process X is a mild integral solution of (w) iff
av.l) Xe Ao;
t

(IV.3) V30, P(Q) = 1,Vwes, X(w) = T,C(w)+(§ T, dH (X)) (W).
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We begin the study of these solutions by formulating a few simple but useful
propositions:
3.2. Let X be amild integral solution of (m). If E|{|* < oo, theno supTE(X,I2 <400,
€K

Proof. The proof is obvious by 2.4 and 2.19.

3.3. A strong solution of (m) is also a weakened solution (by 2.7 and 2.11),

3.4. Conversely, we infer only that

If X is a weakened solution and satisfies condition (1.2), then it is a strong sol-
ution (by 2.11).

3.5. It is obvious that a weakened solution is also a mild solution.

3.6. Let X be a solution of (w) of one of the above types and let X' be a progress-
zvel 'y measurable modification of X. Then X' is also a solution of this type.

" The proof for strong solutions. (For the other types of solutions the proof is

similar.) Since X;—X; = 0 V¢ w.p. 1, by the measurability of X and X’, and the

Fubini theorem we have
. T T

0=\Ex—x|dt = E\|X,— X/ dt.
0 0

Then X; = X{ w.p. 1 for a.a. t, which implies X’ € L'([0, T]; D) and AX, = AX]

[ t t
w.p. 1 for a.a. 5, and so {4X,ds = {AX,ds (w.p.1 V £). Finally, by Definition 3.1,
0 0

M (X) = M(X"), which finishes the proof.
In connection with 3.6 we also introduce another definition:
DermniTION 3.7. We say that a process X is an exact solution iff it is a solution

and for condition (IIL.3) there exists a universal set 2, P(2) = 1, independent of
t (and of y in Definition IIT).

Consequently, an exact solution is a solution in the sense of trajectories.

ProrosiTION 3.8. Let X be a strong solution of (w). Then there exists an exact
strong solution X', and X' is a modjfication of X given by the rlght-hand side of the
equality in (1.3).

Proof. Take the solution X and consider the right-hand ‘side in equality (I.3).

By 3.6 it is sufficient to verify that it defines a progressively measurable process with
well-defined trajectories.

Let 2 = {w: (1.2) holds}; then P(@) = 1 and, for fixed w e &,

X0 C00+ [ AX, ) ds 4+ A (X))
0

is sensible V. By the measurability of 4 (Proposition 2.10) the process AX is pro-

) t
gressively measurable, which implies that V¢ SAX,ds (as-a function of w) is %,
h)
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t
adapted (the Fubini theorem). Moreover, SAX,(w)ds is' continuous in ¢ on £.
0

Therefore, by the assumptions about { and .#(X), X’ is #,-adapted and right-con-
tinuous. So it is progressively measurable ([13], p. 70).

Remark 3.9. As a corollary we infer that an exact strong solution of (m) is right-
continuous (continuous, if . (X), is a continuous martingale).

Remark 3.10 (about Definition III; see [16]). For condition (II1.3) we can choose
for any t a set £2;, P(2) = 1, independent of y.

Proof. By 2.13 and 2.7 (D(A*), |-]D(4.)) is a separable Hilbert space. Denote
by S a countable dense subset of this space. Fix ¢t and define 2, = () £, ,. Then
MEN

P(Q,) = 1. Itis easy to show that under fixed w, € 2, equality (III.3) holds for any
yeD(A¥): Ay, €S y, — y and 4™y, —» A*y (from the definition of the graph norm
| *]peany). So suplAy,.l const and [{X;(wo), A*y,»| < |X;(wo)| - const. Then we can

use the Lebesgue convergence theorem, take the limit and replace y, by y in equality
(I11.3) at the point wq.

3.2. Main lemma. The following statement will be important for us and will
replace, in a certain sense, Ito’s lemma. For the integrals w.r.t. the H-valued Wiener
process this fact has been formulated in [5] (Definition 2.18 of the stochastic double
integral) by analogy with the scalar case (see, for instance, [9], p. 217).

LemMMa 3.11 (Generalized Fubini theorem). Let M € My, 1y (H) and ¥ [0, T] X
% ([0, T1x Q) = L(H, G) be point-measurable w.r.t. BxP satisfying the condition
™) sup ¥, s, Wil < N

u, sef0),
.()

<K< + .
Define '

P E 3i0n) = S(SW( $)dM;)du
and

2@ Z 2o = § ([ P, ) am
00

¢ .
(W/IEI’G§ W(u, $)du must be understood as an integral in the sense of Definition 2.3).

Then Yte [0, T] y! and y? are well-defined, & -measurable random variables
and .
Vtel0,T] yt =y wp. 1.

Proof. We proceed similarly to Metivier and Pistone [12] in the construction of
the stochastic integral and prove the lemma: first for step functions ¥, secondly for
certain strongly measurable functions ¥, and finally for point- -measurable bounded ¥.
The estimations (1) and (3) below make possible the limit passage.
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Fix t € [0, T]and let Q and A be as in Theorem 2.14. By / we denote the Lebesgue

t

measure. Notice that, by Definition 2.3, S ¥(u, s, wydu is point-predictable and by
: [

condition (v) it belongs to A,. So y? is G-valued, #,-measurable random variable,
We have the following estimation for the square mean of y?:

r ot 1
efj((ew ) = § (% 9a)- 042, w2
[ ] a2x[0,1 0
< § (S1we,9)- 012G, w)llusdu) dr  (by the Holder inequality)
ax[0,2] 0
< | t(§uav<u, )+ Q13(s, W) lAsclu) 2.
axo,n 0
So
'
) " ERP) 2 < 1§ |65 du.

0
4

Consider y!; the integral | Y(u, s)dM, has sense. Suppose that it has a modifi-
0 .

cation measurable w.r.t. B x #,. Then we shall have the equalities

) Eglg W(u, s)dM. du = §E($ W, s)dM,|" du = gll!l’(zl)llﬁ‘du,
and—by the Holder inequality—the following estimation:
® EI ) < o 191, d.
Step 1. Let ¢ be of the form '
N
@ Py 5, %) = ZW:(“)X]:,,s;lxh(S, "),

where Vi s, siixF e # and @ [0, T]— £(H, G) is strongly measurable such
that s%pnll(p,(u)!] < co0. Then

t N
® 0 5,900, = 3 115,00 (M) = My ),
i=1

and this form implies measurability w.r.t. B x#,. Therefore in this case y}(p) is
well-defined and it is obvious that y!(¢) = y2(g).

Step 2. Let {h,}2., {g.}%, be orthonormal bases in & and G, respectiyely.
Define H, = Lin{h,, ..., h}; G, = Lin {21, ..., 8.} and let 1T, (II,) be the

onto

orthogonal projection H =y H, (G - G,).
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We define ¥, = II, - W II,: H— G, which means

W, 5, W) = O <hy by CECu, 5, W)(he), 208

Lj=1
It follows from this form that ¥,: (0, TIX ([0, TIx), B xF) » L(H, G) is
strongly measurable. Then there exists a sequence (¥, )f- 1 such that
(1) ¥, [0, TIX ([0, T]1 XLQ) » £ (H, G) and it is of the form (4);
(2) sup [|[¥uu, s, w)|l < 2K;
U, 5,W

G) || Par(u, s, w)—Wa(u, s, w)|| ol 0.

The estimation
NFu—Pn) - Q7 |lEs < |[Phe—Tull? - 1102 lfs = |[Pra—Fl* - TrQ = ||~ Fil?
implies the convergence ||(¥,x—¥n) * O|lfs i 0. Therefore, using the bounded-
ness assumptions and the Lebesgue convergence theorem, we have

t

¢
V=Pl = §( § 1@ QAR d)du > 0.
0

0 [0,fx0

So, it follows from Step 1 and (2) that y}(¥,) is well defined, and from estimations
(1) and (3) we have ¥/ (¥,) = yi(¥y).
!
Step 3. If we show that { 1%~ P13, well 0, the proof will be finished. It is
0 n-

clear, by the construction of ¥,, that
‘ VheH [V,(H-¥H| - 0.
Hence
|, —9)- Q(h)] = 0 Vi.
Therefore, using the estimation
@B @GR < KGRI

. . ‘
and the summability of the series 2; |Q2(s, wy(B)|* = Tr@ =1 (Aae) we have
e

(12~ ) - @235 = Z |(F, =¥ QU2 (R) 3,0 (Vu dae.),

and, as in Step 2, we finally obtain

t

§ 1%, —|13,du, =, 0.

o0
o
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Remark 3.12. Tt is easy to show that this lemma is also true if condition (v) is
replaced by the weaker condition
t
NECRRELE SRS

)
PROPOSITION 3.13. Let W and M be as in Lemma 3.11. Then the process Z,(Y)
= S W(u, s, w)dM, has a progressively measurable modification.

Proof. It follows from the proof of Lemma 3.11 that there exists a sequence
(¥,) such that Vn ¥, is of the form (4), and so Z(¥,) is progressively measurable,
see (5), and Yu ||¥,@)—-¥W)lla,,, 0.

By Proposition 2.16 (b): E[Z(¥,)—Z,(¥))? = ||¥, ()~ E[’(u M4, Therefore
Yuld(ng) Z,(¥,) —» Z.(F) wp. 1, and if we define
limZ,(%, )(w) if this limit exists,

{ otherwise,

ZF)(w) =

then Z'(¥) is a progressively measurable modification of Z(¥).

3.3. Main theorems. Now we can formulate the main result for the generzl model
(m): i
. 'THEOREM 3.14, Let X be an H-valued process on [0, T]. The following conditions
are equivalent:

(II) X is a weakened solution of (m),
(1) X is a mild solution of (w),
(IV) X is a mild integral solution of (m).
Proof. First, using the main Lemma 3.11, we shall prove two technical lemmas.

"LemmA 1, Let M e M2y, ry(H) and introduce rhe notation Y, = ST6 WAM,.
ThenVte[0,T] w.p. 1

3 t !
{vidseDd) ana  4fvids =1 _,am,-
0 0 0

Proof of lemma. By 2.4 and the continuity of the semigroup the function

Wis, )™ y10.a@) Ty, satisfies all the assumptions of Lemma 3,11, Thus, in par-
ticular, w.p. 1 ¥.(w) € L([0, T]; H). From Lemma 3.11 we obtain for fixed ¢
tt

'
SstS = S(S Ts-uds)dM,, w.p. 1,
0 (7]

and the following operator-valued function:

¢(”) di[s T, ds (= SW(S, u)ds)
y 0
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is point-measurable in . For fixed » we have by 2.12
YheH ®wH)eD(A) and AP, = T,_.hi—h.

Therefore @: [0, T]—~ % (H, D) is point-measurable (by 2.10) and (see 2.7 and
24) Yuel0,T] [|Pu|lew,py < + 0. Hence @ € A,(M; H, D). This means that
(see 2.21)

t
t { @,dM, e D) wp. 1,
0
SO
t t

{v.dseD(4) and ASq),.dM,, SAq),,dM,,
0

because A is a bounded operator from D into H. Therefore,
t 13 t t
A\ v.ds = {A0,am, =\ (..~ Dan, = \T,_,am,— m,.
0 0 [\] 0
The second basic lemma is a kind of integration-by-parts formula, which can
be written formally as

d(T, s M) = Ty odM+(dT,_s) M.
A similar formula has been proved in [12] by Ito’s lemma under the stronger assump-
tions on M. The basic tool in our proof is the Main Lemma.

Lemma 2 (Integration-by-parts). Let M e smm n(H). If 0<s<
w.p. 1

t< T, then

L s

§ 7. M.du e D(4)
]

and
§

T M, =\ T, M, —A§ T, M,du.
0 0

u
Proof of lemma. Fix s and t. We can write M, = SI dM.,,. Then by the Main
0

Lemma we have the identity

—un

u
o (§ 7. art,) s = § (7wt ama,;
0
all the expressions in (1) have a well-defined meaning. Using the same method as

that used in Lemma 1, we see that the last expression belongs to D(4) w.p. 1 and

[CTI

§T,_,,M,,du =
0

St

z

s

Ag(gz,;du)d w=SA(§T,_,,du)de _ :

0 w

@
=@ y-1_yart, = \T_yaM,~ T, M,.
[ 0 o

5 DBanach Center t. V
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Then by (1) and (2) we obtain

5 5
T M, =\ T ydM,~ A T, M,du.
0 ]
Proof of Theorem. (IV) = (II). Let X be a solution of (IV)-type; then #(X)e
MZ,, y(H)and V £ w.p. 1

t

6] X,(w) = T,C(W)+STr_sd-/1(X)s-
o

. We must check that X satisfies conditions (I1.2) and (I1.3). Consider the first term
of the right-hand side in equality (3). Fix w; then

@ [LLWw) < ’glgpnllT:H JEw)] < + o
and by 2.12 we have for every ¢
®) { 7.200ds e D(1),
)4t
6 A\ T,Lwyds = T.w)— ().

0

For the second term we use Lemma 1 and obtain

T s
) [ Teudat @0 ds < + 00 w1,
00
®) Viwp. 1 S(§T,_udﬂ(X),,)dseD(A),
o0
) Vi wp. 1 AS(§ Ty yd M (X)) ds = { T, dl (X)s— H(X),.
oo 0

Consequently it follows from (4) and (7) that
X.(wye L} ([0, T]; H) w.p. 1.
Analogously (5) and (8) imply
t
vt wp. 1 {X,00)ds e D(A).

0
Thus (I1.2) follows.

We finally infer from identities (6) and (9) that (I1.3) holds;

t . t
A X 5O = OT L4 [T, bl ()= M (X = X~ L~ M (XD,

0 0

Therefore a mild integral solution of (m) is also a weakened solution.
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It was remarked earlier (see 3.5) that the weakened solution is also a mild sol-
utjon.

It thus remains to prove the implication (III) = (IV). Let X be a mild sol-
ution and fix 7. According to Remark 3.10 we can choose a subset 2,, P(R2)=1,
such that equality (IIL.3) holds for any w € 2, and any y € D(4*).

On £, we have

t

(10) M XY, 3> = (X 75 =L, 3D = (X, A*yd .
0

If we take s = ¢ in the formulation of Lemma 2, then

t t

M (X) = \ T,y d M)~ A Tl (X), 0
0 0

and therefore, for y e D(4%),

) ADL = §Tsdll (0, 7)= (Tl (X0, 42 ds.
0 o

Take y € D(4*?); then we have from (10)
(12) T\l (X)u, A*) = KM (X),, TE LAY

u

= X, TE, A% (8, T A%y = X, 42 TE A%y ds.
0

All the terms (12) are integrable in u (on the interval [0, t]) with probability 1
because for a.a. w X.(w) e L'([0, TT; H) and sup |]T¥]| < co. Let us integrate
) 0<t<T

both sides of this equality:

t

13) (<T@, 49y au
0

t 1 tu
= [<x, T 4y du—(2, T aryan) - § <X, A*T2 A% dsdie,
[} [ 00

The expression (X;, 4*T%, A*y) is measurable in (s, #) as a superposition of
measurable functions; moreover, we have the estimation

<X, AXTELA*Y)| < [X] - |4%2y)] - tsganT:*ll < const - [ Xg|.
€[0,

So it is integrable in (s, ) and we can use the usual Fubini theorem. Therefore,
if we denote by « the last term in (13), we obtain

—,,=§:(

@ ey

X, A*T*_uA*y)du)ds = §<X §A*T,”‘_,,A*ydu>ds.
0 s

5%
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From the semigroup properties 2.13, 2.8 and 2.9 we have
t

SA*T,* JAtydu = A*ST_,,A*ydu = A*(TEy—));
t
then a = —-S(Xs, A*T"f_sy>ds+S<X,,A*y>ds and from (13) we.obtain
V] 0

t e '
1) STl Ay = =0\ T2, Aryau)+ [ <X, A% ds.
0 0 0

By (10), (11) and (14), for any y & D(4*?),

ey 1YL, y>—\ <X, A*y) ds
0

=<§T,_uM(X)u,y>+<¢,§TtuA*ydu>_§<A:,A*y>ds on Q.
0 0 -0

Since
He

S t*—uA*ydu = T:*.V—J’»
0
we finally obtain

e3> = (B8 P+ Trcadl 00 3).

. t
D(4*2) is dense in H; moreover, T,¢ and {T,_,d.#(X), are well-defined elements
. o )
t

of H. Therefore X, = T,C-f—ST,_ud.I{(X)u on £2,.
0

From 3.3 we immediately have

COROLLARY 3.15. If X is a solution of the strong equation, then X is a solution

of the mild integral equation. Consequently, we have the following scheme of impli-
cations:

(@) = (1) < (I11) <> (IV).

Remark 3.15. The opposite implication to the first one in the previous scheme
may be false, even if the initial condition ¢ belongs to the domain of 4. An appro-
priate example is given in [4].

In the spirit of the remark made in the introduction the second main theorem
will be an existence and uniqueness result for certain classes of mild integral equa-
tions (IV). These equations describe the evolution of systems disturbed by state (or
past) dependent white noise, which are important for applications. The Gaussian
white noise may be obtained in our framework as a particular case of the transform-
ation () (see Remark 3.20).
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DEFINITION 3.16. Define :
N3 =4 nLX([0, TIx 2, IxP, H).
Therefore Nj, as a closed subspace of L*([0, T xR, H), is a Hilbert space with
the L>-norm (denoted further on by |- |,).
Let W be a G-valued Wiener process adapted to (#,) with Q as its covariance

operator. As in Example 2.17, {«;} are eigenvalues of O and {e;} is the orthonormal
basis in G composed of eigenvectors of Q.

TeEOREM 3.17. Let B: HX [0, Tl - Z(G, H) satisfy the following conditions:
(&) Vge G B(-, )g): Hx[0, T]— H is measurable in (h,1);
(b)) 3k >0Vie[0,T] VxeH ||B(x, )|]* < k(1 +[x]?);
(by) 3k >0 Vie[0,T]Vx,yeH ||B(x,t)—B(y, )|
Moreover, the H-valued & ,- measurable random variable is assumed to be such
that
© Elf* < + oo,
Then the equation

< k|x—y|.

t
) X, = T,2+ \ T B(X,, dW,
0

has a unique solution in the space N§. Moreover, sup E|X;|> <+ o0 and X is
continuous in the mean square sense.
Proof. The proof is similar to that in finite-dimensional spaces, but we give it

for completeness and in a less standard manner that usual (compare [7], {1 1.

Let K & sup ||T;||.- We define the following operator U on Nj:
0st<T
t
U)(®) = T+ T BT, )dW.
0

This form implies that the process U(Y) is progressively measurable (see 2.20). Con-
sider ({U(Y)]2)*:
4

T T t
o) | BlU @ Pdt < 2§ EITerdr+2 E[ 1._.B(Y., Pt
[1] 0 0 [

By Example 2.17 we have the equality

1 t
E[ 1Bt aw] = Y B § 1T, B, 5) (@) ds.
0 [}

Therefore from assumption (b;) we obtain the estimation
T

@  (UO)2)* < 2T K*- E|fP+2T- K*- k- TrQE| (1+]Y)ds < + oo.
0

Hence U: N3 — Ni.


GUEST


70 A. CHOINOWSKA-MICHALIK

We shall show that U is a contraction operator in some norm on Nj equivalent
to the standard norm. Define

gl = sup {(@o(-an)-({ Bip.ras) "}

(where a is some constant which we shall define later). It is obvious that ||| - [[| ~ [-].
We have the following inequalities for X, ¥ e Nj:

EJ 09~ Va0 Pds = § | 7B, )= BCHu )W ds
[ 0

! s

sTrQ-Kz-k"g(e“‘ (-MS E|Y,~X.| du))

t
<TrQ- K2 k%[ &1 X—Y]|[?ds
0

Tr .Kl.kl. 2at
< DO K ke

- 2

- X=YIIP%.

So

K k-VT
liven-veol < EE XL jx_yy,
V2a
. TrQ . . .
and if a > , U is a contraction operator in the norm ||| - |||. Hence

in N3 there exxsts one and only one solution X of equation (*) (X is the fixed point
of the operator U).

By the same estimations as (1) and (2) (with U(X) = X) we obtain

sup E|X;2 < + .
o<t<T

Finally, for ¥ € 4,(W; G, H) and t > u; we have the estimation

t u
BT, .¥,aW, -\ T,_,7,aw,[
0 0

< 2E\§ (Toea

—&

i r(T,-u

i=1

i
[ 2.,
u

t
D¥(e) *ds+2 § BT, 0" s,

u
If (t—u) - 0, then it is obvious that the last term converges to 0, The first term
converges also to O—by the continuity of the semigroup and the Lebesgue con-
vergence theorem. Therefore X is continuous in the mean square.

Remark 3.18. As in the real case we can make assumption (b,) weaker;
namely,

(b2) Vnik,ViVx,ye H (x| < n and y<n)

= ||B(x, )= B(y, )|| < ky - [x =l
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Then (a), (by) are sufficient for the uniqueness, provided any solution of (*) has
a modification with trajectories in. L®([0, T, H). (For the idea of the proof see[7].)

Theorem 3.17 is a particular case of the theorem below, including the equa-
tions with the noise dependent on the whole past. We have formulated Theorem 3.17
separately, because it is more convenient for applications.

THEOREM 3.19. Assume that B: Njix[0, T]1— (G, H) is such that

(Fa) V¢ B(X,t) = B(X', ), where X* means the process X stopped at t and
VgeG B(-, *)g): NiX[0, T]— H is measurable in two variables;

T T
(Fb) 3k > 0V XeNEVi  E§|BX, s)(e)?ds < k- (E{1X,|2ds+1);
[] 0

(Fb)) 3k >0Vte[0, TIVX,YeNiVi

<
t
E § |B(X, s)(e) — B(Y, s)(e)|>ds

t
< k- EY | X~ Y2 ds.
[

Let assumption (c) also be satisfied. Then the equation

1
() = T,0+{T._ B, )dW,
0
has a unique solution in the space Ni. Moreover, X is continuous in the mean square
sense and sup E|X,|? < + 0. ‘

Proaf Note that the proof of Theorem 3.17 applies here.
Remark 3 20. The assumptions (a), (b;) ((Fa), (Fb,)) imply that .#(- ), defined

as A (X), = SB(X, 5)dW,, maps N3 =47 into Mfo, ry(H). Therefore equation

(*x) is of (IV)-type

It follows from assumption (c)—by Proposition 3.2—that the unique solution
of (%) in N is also a unique (up to modification) solution in the sense of Defini-
tion IV.

3.4. Applications of the main theorems. The general model (m) includes two
important cases:

Stochastic evolution equations with state independent martmgalc noise (when
M) M) = M e Dy, 1);

Stochastic evolution equations with state dependent Gaussian white noise (when
() is such as in Remark 3.20).

3.4.1. An application to stochastic evolution equations with constant noise trans-
formation, Suppose that in Definition 3.1 No=AN and VX EJV M(X) =
M e M2, 1,(H). Then the model (m) has the form
dX, = AX,dt+dM;,

® Xo =t
V.
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DEFINITION 3.21. Let
Nj = {H-valued progressively measurable processes
with trajectories belonging to L*([0, T]; H) w.p. 1}.
As 1mmed1ate corollaries of §3.1 and Theorem 3.14 we obtain the following
existence and uniqueness results:

t
THEOREM 3.22. The progressively measurable process X, = I,{ +§T,_,dMs is

the unique (up to modification) in the class N4} :
(2) weakened solution of (); -
(b) mild solution of (&) (compare with [16]);
(c) If there exists a strong solution of (W), then it is a modification of the process

= B,{+T, M.

THEOREM 3.23 (proved earlier in [12] and for the Gaussian noise case in [5]).
Let D be the space defined in 2.7. If M € My, (D) and { is D-valued random vari-
able, then the strong equation corresponding to (W) has a unique (in the sense of tra-
Jectories) exact solution and this solution is a right-continuous version of the process

X = T:C+§Tx sdM.
34.2. An application to evolution eqzmttons with state-dependent Gaussian noise.
Consider the stochastic differential system
- dX, = AX,dt+B(X, t)dWw,,
® | Y-t
The following theorem is an immediate consequence of § 3.3:

THEOREM 3.24. Under the assum_z}tions of Theorem 3.19 (of Theorem 3.17) there
exists a unique weakened (as well as mild) solution of (&), given by the solution of
the mild integral equation (x).

Let us turn our attention to the strong equation. As a corollary of the previous
theorem, Remark 3.18 and Proposition 3.3 we get

THEOREM 3.25 (Uniqueness). Under the assumptions (a) and (bj) there may exist
only one strong solution of system (§).

Making use of § 3.1 and § 3.3, we can also obtain some existence results for
such strong equations, The first one is quite general but not convenient:

PrOPOSITION 3.26 (Existence). Let X be the solution of equation (vx). Moreover,
suppose that

(d) &eD(A) w,p.klg
(&) T.B(X, )(g) e D(4) w.p. 1 Vge G Vs&[0, T, 10, TI;

(f) sup E§[IAT,_,(X, )Q"*||3sds < +co.
0gisT
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Then X is a solution of the equation
t t
(%4) X, = t+{ ax,as+ | B, s)aw..
o 0

Proof. The proof is a consequence of Proposition 3.4 and Theorem 3.14.

Remark 3.27. Let B: Hx [0, T]1— %(H, G). If one of the following conditions
is satisfied:

() VxeH,geG B(x,t)(g)eD(4) wp. 1 Ve [0 T;

@) T,(H) < D(4) for tel0, T],
then assumption (e) is fulfilled.

TreoreM 3.28 (Existence and uniqueness). Suppose that B: HX[0,T] -
% (G, H), satisfying condition (a), is such that

Vie[0, T]Vg e G B(D(4), 1)(g) « D(4)

(i.e. B: DX[0, T]—~ £(G, D)). Moreover, B fulfils (by), (bs) w.r.t. the norms
I llice,pys |*|ps € is supposed to satisfy (8) and (c) w.r.t. |-|p.

Then there exists a unique, in the sense of trajectories, exact solution of equation
(x*x). This solution is continuous w.p. 1.

Proof. By Theorem 3.17, equation (x) has a unique solution in Nj. Moreover,
oiltJETE{X, |3 < +4o00. Therefore (e) is satisfied.

‘We have the estimation
“ATt—-xB(X:: S)QI/ZHI%IS

«©

= }_a.mz B, (e < < Y wllAT o, ml B s)ed 3

=1 i=1
0
< D el Ty - L+ 1X1B).
=1

Consequently (f) is also fulfilled, and by Proposition 3.26 the existence is proved.
The remaining part of the theorem follows from Proposition 3.8 and Remark 3.9.

Remark 3.29. Analogously: If the assumptions of Theorem 3.19, with H repla-
ced by the space D, are satisfied, then equation (+*+) has a unique continuous so-
lution. ’
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ON y* TESTS OF COMPOSITE HYPOTHESES

R.M. DUDLEY

Department of Mathematics, Massachusetts Institute of Technology, Cambridge Mass., USA

For a y? test with m cells and a composite hypothesis in an s-dimensional submani-
fold V, Birch [4] showed that simple differentiability of ¥ suffices to give a limi-
ting y2-s-; distribution. Dzhaparidze and Nikulin [14] introduced modified X
statistics for composite hypotheses, which are easier to compute than the classical
ones. Here, these results are proved for topologically non-trivial manifolds (such
as circles and spheres).

1. Introduction

For background on the y2 test, we refer to Cramér [11], Lancaster [18] and C. R. Rao
[25]. Let #(X) denote the probability distribution or /aw of a random variable X.
Let x denote a 2 variable with d degrees of freedom, i.e. & ) = LG+ ... +G)
where G, are independent standard normal variables. Let N(m, C) denote a Gaussian
(normal) distribution on R? with mean vector m and covariance matrix C. The
characteristic function of a y? variable is given by

n Eexp(ityd) = (1-2i)~2 = f(£)~,

where f(t) = (1—2it)"/2, using the continuous branch of the square root with po-
sitive real part.

Let S be a finite set with m elements, say S = {1,2, ..., m}. In the appli-
cations, S often results from decomposing a more general space into m cells.- Let p
and ¢ be probability measures on S, p{j} = pj, ¢{j} = 4,7 = 1, ..., m, with p; > 0
for all j.

Let Yy, Y, ... be iid. (independent and identically distributed) with distri-
bution g. Given n, let n; = n;(w, n) be the number of values of i < n such that ¥; = j.
Let

X% = Z (ny—np;)* np;.
1€jsm

If g = p, the central limit theorem in R™ implies that £ (X?) - PL(x2-1) as
n — oo for the usual convergence of laws. Thus if ¢ is unknown but ¥; can be ob-
served, the hypothesis ¢ = p can be tested by the 2* test using the X? statistic,

[75)
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