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ON y* TESTS OF COMPOSITE HYPOTHESES
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For a y? test with m cells and a composite hypothesis in an s-dimensional submani-
fold V, Birch [4] showed that simple differentiability of ¥ suffices to give a limi-
ting y2-s-; distribution. Dzhaparidze and Nikulin [14] introduced modified X
statistics for composite hypotheses, which are easier to compute than the classical
ones. Here, these results are proved for topologically non-trivial manifolds (such
as circles and spheres).

1. Introduction

For background on the y2 test, we refer to Cramér [11], Lancaster [18] and C. R. Rao
[25]. Let #(X) denote the probability distribution or /aw of a random variable X.
Let x denote a 2 variable with d degrees of freedom, i.e. & ) = LG+ ... +G)
where G, are independent standard normal variables. Let N(m, C) denote a Gaussian
(normal) distribution on R? with mean vector m and covariance matrix C. The
characteristic function of a y? variable is given by

n Eexp(ityd) = (1-2i)~2 = f(£)~,

where f(t) = (1—2it)"/2, using the continuous branch of the square root with po-
sitive real part.

Let S be a finite set with m elements, say S = {1,2, ..., m}. In the appli-
cations, S often results from decomposing a more general space into m cells.- Let p
and ¢ be probability measures on S, p{j} = pj, ¢{j} = 4,7 = 1, ..., m, with p; > 0
for all j.

Let Yy, Y, ... be iid. (independent and identically distributed) with distri-
bution g. Given n, let n; = n;(w, n) be the number of values of i < n such that ¥; = j.
Let

X% = Z (ny—np;)* np;.
1€jsm

If g = p, the central limit theorem in R™ implies that £ (X?) - PL(x2-1) as
n — oo for the usual convergence of laws. Thus if ¢ is unknown but ¥; can be ob-
served, the hypothesis ¢ = p can be tested by the 2* test using the X? statistic,

[75)
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K. Pearson [24] proposed the test, approximating Pr(X* > M) by Pr(ya_, > M).
Of most interest are values of M which give statistical “significance” at conventio-
nal levels, such as Pr(y2_, > M) = .05, .01 or .001.

The approximation of X? by x2 is considered adequate if np, > 5 for all i (Co-
chran, [10]; Roscoe and Byars, [27]; Yarnold, [29]).

2. Some evidence on the X? approximation

We report here on one Monte Carlo experiment for the X? statistic with n = 80,
m = 16, and p; = 1/16 forj = 1, ..., 16. In 10,000 iterations, using a total of 800,000
pseudo-random numbers from 1 to 16, the results were as follows, where N(X? > M)
denotes the number of cases in which X2 > M.

M 10°Pr(xis= M) NX2z M)

23 1,000 966
25.0 500 458
27.5 250 245
N 30.6 100 102
32.8 50 56
317 10 11

The agreement is excellent. The statistic maxn;, whose distribution in cases
J

of significance is known (Doornbos and Prins, [13]) was used as a check on the
randomness of the pseudo-random number generator, also with excellent results.

The agreement of the laws of X2 and y? seems much better than would be ex-
pected from known “Berry-Esséen” results on speeds of convergence in the central
limit theorem. It is thus a challenge to probabilists to explore this approximation
further, also in the more complicated case of composite hypotheses (Sections 4-6
below).

3. Some differential geometry

We will review some basic definitions and constructions.

Let X and Y be two Euclidean spaces. The usual norm on such a space will be
written |- |. A function f from an open set U < X into Y is called differentiable at
p with derivative f'(p) iff f'(p) is a linear map from X into ¥ such that,

) =fp)-f' D) x=p)/Ix—=p| =0 as x—p.

This f'(p) is also called a total or Fréchet derivative and may be written (Df)(p).
?[‘he chain rule holds: if f maps U into an open set V <= Y, g maps Y into another
Euclidean space Z, p € U, and f'(p) and g’ ( b p)) exist, then

@' =g () (f'W).
Let 'L(X , ¥) denote the set of all linear transformations from X into Y. Then
L(X, Y) is also a finite-dimensional real vector space, on which all norms are equi-

valent. When the derivatives exist, f'(p) € L(X, ¥), f (P e L(X, L(X, T)), etc.

We say f'is k times continuously differentiable, or C¥, iff f exists and is continuous
on U. .

icm

%* TESTS OF COMPOSITE HYPOTHESES 77

Given a topological space S, a chart or local coordinate system (U, f) is a ho-
meomorphism f of a connected open set U < § onto an open set in R™ for some m.
Two charts (U, f) and (W, g) are said to be C*-related iff f(U) and g(W) have the
same dimension and on g(Un W), fog™! is C* with D(fog~") nonsingular, (If
Un W = @, the condition is vacuously satisfied.)

A C* atlas is a collection o of charts on S such that

(@) VpeS AU, fled: pel,

(b). any two charts in & are C* related.

An atlas o will be called complete iff for every chart (U, f) which is C*-related
to each chartin .o, wehave (U, f) € .

A C* manifold is a pair (S, &) where S is a connected Hausdorff space and &/
is a complete atlas on S. We will assume & > 1 when writing C*.

The dimension dim S of a manifold S is defined as the common dimension of
the ranges of the charts.

Every atlas of is a subset of a,unique complete atlas, namely the set of all charts
C* related to all charts in /. On R", the identity map Iis a chart and {I} is an atlas,
so for each k, (R", o)) is a C* manifold for some atlas o3 > {I}. Any open subset
of a C* manifold ¥ becomes a C* manifold, using those charts whose domains are
included in the subset. A C* manifold is also a C" manifold for any r = 0, ..., k—1,
since a C¥ atlas is also a C" atlas (no longer complete, but we can complete it).

Given two C* manifolds (M, &) and (N, %), and some r= 0,1, ..., or k,
a mapping f from M into N is called C” iff for any p e M, chart (U,g) e & with
p e U, and chart (V, h) € # with f(p) e V, hefe g™ is C" on its domain.

A parametrized curve is a C* function from an open interval in R into a mani-
fold.

Given a C* manifold V, p € ¥, and two parametrized curves f and g with f(0)
= g(0) = p, we say that “f’(0) = g'(0)” iff for some chart (U,h) with peU,
(hof)'(©) = (heg)'(0). Then if (V,j) is another chart with p € ¥, D(je ) (h(p))
exists and by the chain rule, (o f)(0) = (j-g)'(0).

Thus the relation “f'(0) = g'(0)” is an equivalence relation. The equivalence
class of f for this relation will be called f*(0). The set of all such f "(0) will be called
the tangent space V, to S at p. If dimS = s, ¥, can be made into an s-dimensional
real vector space, since for any chart &, the set of all (k¢ f)'(0) is such a vector space,
and the structure is preserved by the linear isomorphisms D(joht).

For C* manifolds, ¥, can be defined as the set of all linear maps L from C*
functions on ¥ into R such that L(fz) = L()g(p)+/(p)L(g). Such a linear map L
is called a derivation at p. For C* functions with finite k, however, the linear space
of derivations at p becomes infinite-dimensional (Newns and Walker, [22]) and so
much Jarger than V. ’

Given a C® map F from a manifold M into another one N, and a parametrized
curve g in M, Fo g is a parametrized curve in N. This transformation of curves
preserves the equivalence relation f'(0) = g'(0), by the chain rule. Thus it defines
a linear map dF from M, into Np(,, for each p.
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If N = R, then each tangent space N, can be identified with R* in a natural
way. Let L(M,, R):= M}, the dual space of M,, called the cotangent space at p.
For F: M - R and p € M, dF(p) € M. This differential dF is not “infinitesimal”,
although many of the classical differential formulas hold for it.

Let ¥ be a manifold of dimension 5. Let (¢); = 6, ¢; € R°. Then for peV
and a chart (U, x) with x(p) = 0, and j = 1, ..., 5, t = x~'(te)) is a C* curve in V.
Its tangent vector at 0 is called 3/dx;|,. We can write g = G o x where G is a C*
function on a neighborhood of 0 in R®. Then dg/dx;l, = G;(0), the usual partial
derivative with respect to the jth coordinate. Also, if ¥ is an open set in R® with
chart given by the identity (the usual coordinates), then 9/dx;|, has its usual mea-
ning.

The tangent vectors 9/dx;|, form a basis of ¥,. Since dx,(9/dx|,) =
(8x:/0x;)(p) = 0y;, the differentials dx; at p form a basis of V¥, for any chart x.

A C* Riemannian manifold is a C* manifold ¥ together with a function p - B,
on ¥ such that for each p € S, B, is a positive definite bilinear form (inner product)
on ¥, xV,, and for any chart (U, x), p — B,(8/8x1l,, 3/9%;|s) is C* on. U. )

For a Riemannian manifold (¥, B), there is a natural isomorphism 7, of V,
onto V7 for each p, where i,(v)(w) = B, (v, w) for all v, w e V. (This is the usual
isomorphism of a Hilbert space with its dual space.) We have the dual inner pro-
duct B} on V3 x ¥ such that

B¥u, u)'’? = sup{|u()|: v e V,, By(v,v) = 1}.

Let M be a C* manifold and ¥ a subset. Then ¥ is called a C* submanifold of
M iff V has a C* manifold structure of dimension s such that the natural injection
i of ¥ into M is a homeomorphism and is C* with di everywhere of full rank s. Then,
a Riemannian structure on M induces one on V.

If Vis a C* submanifold of some R™, k > 1, then at each v € ¥, V has a tan-
gent flat F, = R™ defined as follows, Let (U, x) be a chart withv e Uand y = x™.
Then if dim¥ = s, y maps an open set in R® into R™, and

Fyi={o+y (x(2)) (@): ue R},
Also, dy|xy maps R® linearly onto V,, and.
u— dy[x(v,(y’ (x('o))_1 (u—-v))
is a 1-1 affine map of F, onto V¥, taking v into 0.

For further information on differential geometry see e.g. Auslander and Mac-
kenzie [2], Bishop and Crittenden [5], Bourbaki [6], or Dieudonné [12].

4. Chi-squared tests of composite hypotheses
Againlet S = {1, ..., m}, and let

P ={{PJ}JM=1: p;=0 Vjand Emzpj = 1}_
' J=T
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Then P, is an (m— 1)-dimensional simplex in R™ and represents the set of laws on S.
Given observed iid. Yy, ..., ¥, € S with unknown law p € P,,, where ¥, = j for
n; values of i < n, let rji= my/n. Then r:={r;}jL, € Pn.

To test the composite hypothesis that p belongs to some subset V' of P, we
first estimate the unknown p = v € ¥ by a function v(r). One method of estimation
is to maximize, insofar as possible, the multinomial probability

nloftoopming . ongl.
For given r, noting that some factors are constants, it is equivalent to maximize
the “log likelihood function” defined by
m
L(r,v) := erln'vj, veV.
=1
Then, we find the X2 statistic:

X2 = nX (=0 ) foy() = Z (ni—nv ;) ) fnvy(r).
3 J=1

Here the subscript e on X? indicates that we used an estimated v(r) rather than a
fixed p.
DerINITION. A function # — o(r) from P, into V will be called a maximum
likelihood estimator (MLE) iff
L(r,o(n)= sulg)L(r, v)
vE|
whenever the sup is attained on ¥, and then we say an MLE exists.

Note. If the sup is not attained on ¥, v(r) may be an arbitrary element of V.
We will use an MLE only on the countable set of r € P,, with r; rational (= n;/n).
All subsets of this countable set, hence all functions on it, are measurable.

DEFINITION. A set ¥ < P,, will be called a Birch s-submanifold iff (a) v; > 0
for all j and all » € ¥, and (b) for each p € ¥, V has a tangent flat of dimension s
at p, i.e. there is neighborhood U of 0 in R® and a homeomorphism w of U onto
a neighborhood W of p in ¥ with w(0) = p such that w'(0) exists and has full rank s.
(Since V' < R™, w'(0) can be defined, as well as dw(0).)

Here w—! can be considered as a chart. If w’ can be taken continuous, then V'
is a C* manifold.

In previous literature, it was assumed that W=V (e-g. Birch, [4]), so that
one chart covered ¥; U was generally called @. But, for ¥ a circle, sphere etc. (e.g.
Mardia, [20]) we need more than one chart. Also, the choice of a chart is often some-
what arbitrary.

@.1)

(42) Turorem. Let V be a Birch s-submanifold of P,,. If ¥; are i.id. (p) with pe
V, then

Pr{w: an MLE o(r(w))exists} > 1 as n—w,
and

LX2) > & (fm-s=1)-
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Note. The theorem is applied in practice for s < m—2 in order to have a non-
trivial limit law.

Historical notes. R. A. Fisher (1924) first stated a theorem like (4.2), and gave
a non-rigorous proof. A proof by H. Cramér [11], assuming that w is C?, has been
criticized for some unclarity about the choice of estimates. C. R. Rao [25] gave
a proof where w is C1. M. Birch [4] reduced the hypothesis to simple differentiability,
which seems to be the weakest possible assumption in this direction. The proof
below is a simplified version of Birch’s proof.

. 5, Proof of Birch’s Theorem
We set 0+ In(x/0) = 0 for all x and xIn(x/0) = oo for x > 0.
(5.1) LevmA. For any x and y € [0, 1],
xtn(xfy) Z x—y-+3(x—»)>

Proof. If x or y is 0, the result holds by our conventions. If x > 0 < y, then
Taylor’s Theorem with remainder gives :

xlnx = ylny+ (1 +Inp)(x—p)+ (x~y)* 2w
for some w between x and y. Thus 1/w > 1 and the 'result follows. m

(5.2)

LemMma. For anyr,v € Py,

Zr,ln(r,/v,) > Yr—vol’:= %; (ry—u)*
= =

Proof. By (4.1), for each j, rin(r/v) = r—y+3(—v ). Then summing
over j gives the Lemma since Y, 7—o; = 1—1=0. m
(5.3) Lemma. Forp e V and empirical r(w) = r = {r;}j2s for p,
Pr(an MLE o() e ¥ exists) =1 as
Asr—p,v(r)—> p.
Proof. We have r — p by the law of large numbers. For r close enough to p,

supL(r,v) = supL(r,v) > supL(r, v),
velV veW vEW

n-— 0.

where W is a neighborhood of p in ¥, by (5.2). Such a W can be taken to be com-
pact, so the sup is attained. Asr —p, W—psoo(r)»p.
For each p € P,, with p; > 0 for all j, we define an inner product

oMy i= Y ayly and  alyi= (x, DR
J=1

For a fixed p, or for p with all p; bounded away from 0, there is a constant M <
such that :

[XI/M < x|, < Mix].
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Thus in a statement like |x,], = o0|y,[, as n— oo, the p subscript makes no differ-
ence.

(54) LemMMA. Asr—o pandv—p,veV,

m
~2Z; rdn(@/r) = Ir—oj2+o(r—pl*+lv—pl?).
=

Proof. Since by assumption p; > 0 for all j, we can assume v; > 0 and r; > 0
for all j. Then by the proofs of (5.1) and (5.2),

-2 2 rdn(ogr) = Z @—rIwi,

where w; is between v, and r;. Then 1/w; = 1/p;+0(1). Now (ri—v))* < 2(r—p)*+
+2(p;—w;)? since for all x and y, (x+)* < 2x*>+2y% Thus |r—o|2 = o(r—p*+
+|p—v|?) and (5.4) follows. m :

Now let F be the tangent flat to V at p. Then F = {p+w'(0)(u): u € R*} where
w is as in the definition of Birch submanifold. For x € R™ let f(x) € F be such that

jx—f(x)|, = min{|x—y|,: y e F}.

In other words, f'is the “orthogonal projection into F” for the (-, -), inner product.
(5.5 LeMMA. 4s v = p,v eV, |lv—f(©)| = o(jlv—p)).

Proof. This follows directly from the definitions. m
(5.6) Lemma. Asr—pandv—>p,veV,

m

~2 " mln(r) = [r—f0) 3+ 1~F@)3+0(r—pl*+1o—pl2).
i=1 .

Proof. We apply (5.5) to obtain in (5.4)
[r=f@) 15 +o(r—pI*+|v—pl»).
Then since r—f(r) is perpendicular to F—F for (-, ),

lr=f@) 1} = Ir—fO 3+ -f@)7. =
(5.77 LemmaA. (a) For r close enough to p,
[v(r)_Plp < 2|r_PIpy

(b) Asr - p, | f(N—=fe() = o(lp—rl), and

© lv()—=f)| = o(lp—rl).

Proof. By (5.3), v(r) exists and converges to p asr — p. Then f(r) = p+w'(0)(x)
for some u = u(r) —» 0in R* as in the definition: of Birch submanifold, and |w(u)—
—f()| = o(ul). Then o(ju) = o(|f()~pl) = o(r—pl). Thus |f(w())—f(r) =
o(jr—pl)- ‘

¢ III: [%5.6) the left side is minimized atv = v(r) by definition, so it must be smaller
there than at v = w(u(r)), where |f(:)—f(v)|* can be included in the o(-) error

6 Banach Center t. V
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term. Hence - E
(O] [AD =A@ = o(lr—pl>+|v()~pI?)-

If (a) fails, take a sequence r, = r = p with [p—o(r)|, > 2|p—r|,. Then [f()—
—fo) = o(lp—2(]) by (), and |f(@())—o()| = o(]o()=p[) by (5.5). Then
A —v()| = o(lp—2(r)]), and [o()—pl, is asymptotic to |f()—pl, < [r—pl, as
r — p, a contradiction. Thus (2) is proved. By (%), (b) follows.

Next, 'o|(N=f(2(")] = o(lo(r)—p]) = o(r—p)) by (5.3) and (5.5). Combining
gives (c). m
(5.8) LEMMA. Asr—p,w—p,andv—->p,veEV,

n

Y o= lr—f@) 4 o(r—pl*+ lo—pl?).
i=1

Proof. Since ©(r) = p by (5.3), (5.8) gives Y2 = |r—f(v(M)|;+o(Ir—p» in
view of (5.7) (2). By (5.7) (b), then, we are done. o
Proof of Birch’s Theorem (4.2). By the central limit theorem in R,

L({n(ry—p)|mp)*2 Y1) = N(O, I-{(0ip)'*}j=1)
as n — co. Thus no(|p—r|?) = 0 in probability as n — . Then by (5.9), X7 = n¥?
has the same limit law as njr—f(r)[2.
Now for any r € P,

r= (r=f0)+(fO—p)+,
where the three summands are all orthogonal for (-, -),. In fact, for any x,ye
Py, (x=y,p), = 0, and for any a, be F, (r—f@), a~b), = 0. Thus,

©r=pl} = Ir=AO 3+ -pl5.
Hence & (nr—p|2) - L(yh_1) as n - 0.

n
Let Z:={ze R™: 121 z; = 0}, a linear subspace. For any z € Z,

H = Ip+2z=fp+2)15+1f(p+2)—pl;.
Let g(z):= f(p+2z)—p. Then g is linear on Z, with range F—p of dimension s. The
map z - z—g(z) is also linear, and its range is orthogonal to F—p and to p for
(", *)p- Since F < P, F spans a linear subspace of dimension s+ 1. Thus I~g on
Z has rank at most m—s— 1. By the Fisher-Cochran theorem (Scheffé, [28], Appen-
dix VI) with z = r—p, we see that

L(r—f13) = L(nos-s)  as

The main difficulty in applying the Fisher—Cramér-Rao-Birch Theorem (4.2)
in practice is the computation of the estimate v(r). To evaluate the MLE one would
first solve the “ML equations” dL(r,v) = 0, which in coordinates gives a system
of non-linear equations. Methods of solution include “Newton’s method” in several
variables and Cauchy’s “method of steepest descent”; cf. Ortega and Rheinboldt,

n—>ow. n
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[23], pp. 179-187, 240-247. Furthermore, the ML equations may have multiple
solutions, even infinitely many which must be compared to find the actual MLE,
and in general, one has no straightforward method of determining all solutions.
Neyman [21] proposed “best asymptotically normal” estimates, some of which
are easier to compute, since the ML equations are replaced by linear ones (cf. also
LeCam, [19], and Bickel, [3]). The linearization, however, may depend on the choice
of chart. The method of Dzhaparidze and Nikulin [14] treated below is chart-free.
The function f as in (5.5) maps ¥ onto a neighborhood of p in the tangent flat
F by a theorem of Kronecker (Alexandroff and Hopf, [1], p. 468). Thus in the proof
of (5.7) we could replace w(u) by 2 w € V with f(w) = f(r). In the C* case once could
use the Implicit Function Theorem. But a direct proof from minimal assumptions
seems preferable, although manifolds encountered in practice are usually C*.

6. A modified X2 statistic for use with convenient estimates

As mentioned in Section 5, the multinomial MLE ¢(r) may be hard to compute.
In testing whether a distribution on R is normal, we may prefer to use the more

convenient “ungrouped MLE” estimators X:=X,+ ... +X,)/n for the mean and

n

'—1" X} = pn-t ‘—1 ,2._"2
o ;Z(X Xy =nt (Y x7)-%

=1

..

for the variance.

In other cases as well, when a space X has been decomposed into cells for a 3*
test, one can estimate the unknown law more accurately and easily by using the
full original data rather than only the cell occupation numbers 7;. The main prob-
lem then is that X2 no longer has a limiting y2 distribution (Chernoff and Leh-
mann, [8]). Following Dzhaparidze and Nikulin [14], and extending their result
to more general manifolds (C* rather than C2, or requiring more than one chart),
we will modify the X? statistic to solve the problem. Recalling the log likelihood
function

L(r,v):= Z r,lno;,

for fixed r we take the differential at each v € ¥, dL(r,v) € V', where

6.1 dL(r,v) = Z (rifvi) do,
1<ism
il
= }__‘ (1+(’1—7)1)/7-’1)d7)t
1<i<m )
= Z (ri—wp)do,fo;
1gi<m
since Y w;=1onP,, s0 Y, do=0.
1<i<m I<ism

6*
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Now we will assume that ¥ is a C* submanifold of U,:= {p € Pu: p; >0
for all j}. '

Here U, is an open subset of the (m— 1)-dimensional linear variety {x: Zx, =
1}. All tangent spaces (Up), of Un, as a submanifold of R™, can be identified as
vector spaces with the linear subspace Z of R™ defined by

Z:= {x €R™: Z Xy = 0}.
1gism
The inner product
By(x,y) 1= (x,))p = Z %3ilpi

1<jsm
restricted to Z thus defines a C* Riemannian structure on U, and a C ! Riemannian
structure on V.
We also then have the dual inner product BY. on the cotangent spaces V. Let
]| pe 2= B, w12,
(6.2). Lemma. For any C* submanifold V < U,, asr —p and v - p,
HL(r, 2)||12 = lw~2() s +o(r—pl>+|v—p[*).

Proof. Note that here |- |2 is defined on R™, but ||+ |[? on cotangent spaces
V*. We take a C* chart x defined on a neighborhood U of p in V. Then dv, =

3

(dv,/dx;)dx; on U, where by the C* assumption, dv,/dx; are continuous and
J=1 !

hence locally bounded.
In (6.1) we write r—2 = (r—o(r)+(v(")—2).

Cram. lém (ri—v(y)doifo, = o(r—p).

Proof of Claim. In terms of the chart x we have

Y (mo)dodo= Y (rmo)) Guifox)ds oy
1

{gism <igm,1<j<s
= ) (r—v(), d/ox).dx;,
1<j<s
where (-, *), is defined on R™xR™, and dv/dx;:= {dv,/dx;}/., is a vector in R™
parallel to the tangent flat F, to V at v, i.e. dv/dx; € F,—F,. By the C* assumption,

F, converges to F, as v — p. Thus, the angle between dv/dx; and F, approaches 0
asv - p.

From Lemma (5.7) (c), v(r)—f(r) = o(lp—r|), where r—jf(r) is orthogonal to
Fy—F,. Then asv —» p and r -+ p,

(r—v(), dv/oxy), = (r—o(r), 9v/9%)),+0(p—t])
(r=fr)+o(p—r)), fi+0(1)), +o(p—rl)

o{lp~ry+o(lr~f)) = o(lp—1D),
where f; € F,—F,. The Claim is proved.
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Thus dL(r,v) = gl (v(r)i—v.)dvifv;+o(|r—p)). We have

ldL(r, D)l = sup {|ldL(r, 0)(W)|: w € ¥y, W]y = 1}.

Letting w = 12 Wi8]8%y]y, we have [w|2 = Y, ww; Cy;(@), where
igs 1<i,j<s

sig

m
1 B'vk a‘Z)k

Cule) = (@fom, ofox), = ) —— k2%
Pt

Thus our Riemannian metric is represented in a coordinate system by what statis-
ticians call the “Fisher information” matrix. Now

AL = Y @EO—v)wdfortolr—p)
t<i<m
as r = p,v — p, weV,, and |w|, remains bounded.

For the natural mapping of ¥, into Z = R™, w has components w(v;) = w;,

i=1,...,m Then

dL(r, 9)(W) = (v()~v, w),+o(r—p))
as r - p, v - p, and |w|, stays bounded. Now since v(r) > p, v = p, and Vis ct,

v(r)—v = y(r,0)+o(lv—pl+|r—pb),
where y(r, ) € F,—F, c Z. Let W = y(r,v)/|y(r,9)|,- Then

L}y = |dL(W)|+o(r—p|+lv—p),
and .
[dL(w)] = [e()—ols+o(o—p|+]r—pD).
This gives Lemma (6.2). m
(6.3) LeMMA. Asr—pandv — p,

=2 = Jr—v() 3+ o) —v[3 +o(r—p* +[v—pI).

Proof. As r — p, |[p—v(r)|, < 2|r—p|, by Lemma (5.7) (2). Then all norms in
(6.3) can be replaced by | - |, norms as in Lemmas (5.4) and (5.8). Then o(r) can
be replaced by f(r) using (5.7) (c), and v by f(v) using (5.5). Then, the result follows
by combining (5.4) and (5.6). m

DEFINITION. An estimate p = p(s, ) € ¥ of p, not necessarily a function of
the 7;, will be called n"/>-consistent iff ni/2|p—p| is bounded in probability, i.e. for
any & > 0 there is an M < co such that

supPr {n2(p—p| > M} < &.
n

Let Z2:= Z}:= nlir—pi — IdL(r, P)1i3.]. Dzhaparidze and Nikulin [14] intro-
duced Z2 and proved the following result in case Visa C? image of an open set in R*.
(6.4) TuEOREM. For any C* submanifold V of Un with diimV = s and any n'/*-con-
sistent estimator p € V of p, £(Z§) = £ (Ym-s—1) a5 1 = 0.
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Proof. By the n'/?-consistency, n(o(]ﬁ—p[’)) -0 in probability as n — co.
We saw in Section 5 that n(o(|p—r*)) — 0 in probability for the empirical r = r(w, 7).
By Lemmas (6.2) and (6.3), Z,% has the same limit law as nlr—o(r)|2%,, namely
P (y%-s-1) by Birch’s Theorem. m

To apply the theorem one will need to compute ||dL(r, ﬁ)l]%,) in terms of coor-
dinates. For C a positive self-adjoint operator (matrix),

sup {|Ge, M1z (Cy, ) = 1} = sup {|(x, »)|: [IC*2y]] = 1}
sup {|(x, C"22)|: |lzl| = 1}
sup {|(C~12x, 2): ||z]] = 1}
= [|C-2x]| = (CH2x, CH2x)12 = (C-1ix, X)12,

In our case, C is the Fisher information matrix, and

I

1

5

LG, D)3 = D (Cu(2L()/0x) (BL@)/x;)

$j=1
which is evaluated at v = p.
Note that e.g. for s = 2, inversion of Cis not difficult.

Notes. Chentsov [7], pp. 173182 treats the Riemannian metric S dp)r oy we
used above. He shows that it is the unique metric with a certain natural “equivari-
ance” property, and notes its representation by the Fisher information matrix. Rao
and Robson [26] also consider modified X statistics for composite hypotheses.
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