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0. Introduction

Our purpose is to discuss stability properties of the following simple adjustment
scheme which seems to arise in various applications. Consider two non-negative
stochastic processes X = (X0 and ¥ = (¥,).»o wWhich are adapted to some in-
creasing family of o-fields (% ,)n50. Let X react to positive values of the “signal” Y
with a trend downwards, and let ¥ react to sufficiently large values of X by becoming
positive. We assume that the interaction is strong enough, which in particular will
mean

(01) E[Xn"' ,,+1[9_"] = Yn on {Yn > 0}!

and we show that this implies positive recurrence in the sense that

n
0.2) liminfis1 Ly <a) > 0 as.
LRGN e

for any « > 0. If in addition the trend of X is “switched off at equilibrium”, i.e.,
0.3) E[Xn"‘Xn+1]yn] =0 on {Yn = 0}’

©
one obtains “quick convergence to equilibrium” in the sense that 3¥, <o as.
n=0

In Section 3 we illustrate the technique by an example, where a process (Z,),»0 is
“stabilized” at some fixed level.

In the theory of Markov processes such martingale criteria for positive recur-
rence and convergence are essentially well known; cf., for example, Bucy [1], Wonham
[9] and Hildenbrand-Radner [4]. The usual setting is X,, = f(,) and ¥, = &lp. (&),
where X arises by observing some function f along the paths of some Markov pro-
cess (£,), and where A is some subset of the state space E. (0.1) then means that f
is a (weak) Liapunov function for 4, and (0.2) translates into positive recurrence
of A. (0.3) means that f is superharmonic on E and harmonic on 4, and it implies
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that the process finally stays in 4. The present note came out of a discussion with
W. Hildenbrand who suggested to drop the Markov property in the context of [4].
T.L. Snell then pointed out to me that martingale criteria for recurrence (but not
for positive recurrence) of general stochastic processes appear already in Lam-
perti [5].

The proofs only involve repeated use of the discrete Doob decomposition and
the law of large numbers for martingales. A continuous time version'of (0.2) for
right-continuous semimartingales, which is based on the representation of semi-
martingales as signed measures, will appear in [3]. ‘

1. A Liapunov criterion for positive recurrence

Let X =.(X,,),,;o and Y = (¥,),»0 be two stochastic processes with values in [0, c0),
both defined over some basic probability space (2, #,P) and adapted to an in-
creasing family (F,)nso Of o-fields in &. We assume that X has bounded condi-
tional variance in the sense that

(1.n o E[(Xps1—X)* | Fnl < ¢

for some constant ¢ > 0.

(1.2) DernITION. Let us say that X is a Liapunov process for Y, or that (X, Y)
is a Liapunov system, if

(1‘3) E[Xn_Xn-{-llyn] > yn on {Yn > 0}’
and if -
(1.4 X* = supXys s fyusay < 00 P-as.

for some constant a > 0.

(1.5)  Remark. Suppose that X has bounded increments. Then (1.4) is satisfied
if X is bounded near {Y = «} in the sense that

(1.6) supX, Iy, <) < 00 P-as.

or "

mn supX, Iy, <a) < 00 P-a.s.
n

(1.3) and (1.6), resp. (1.7) specify. the interaction between X and Y. (1.3) means
that X reacts to the “signal” Y by tending downwards as soon as ¥ > 0 (the signal
is “on”), and that it does so at a pace which depends on the magnitude of Y. On
the other hand, Y reacts to X by assuming a value > o if X is above some “critical
level”, either immediately as in (1.6), or with a time lag as in (1.7).

‘We now want to show that a Liapunov system does not drift away. More pre-
cisely, let us define for any § > 0 the set

A,g = {(w,n)l Y,,(CO) < ﬁ}]

in2x{0,1, ...}, and let us show that the system spends a positive fraction of the
time in Ag:
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(1.8)  TueoreM. If X is a Liapunov process for Y, then each set Ay is positive re-
current in the sense that

1.9 lxmxnf~LlAﬁ( B> 1+C()

k=0
with Cp(.) = (@A f)~1X*(.).
(1.10)  ExampLE. Let (§,)n0 be a stochastic process on some measurable state
space (E, &), defined over (2, #,P) and adapted to (F,)n»o0. Let A€ & be
a measurable subset of the state space, and let /' be a non-negative function on E
which is bounded on 4. Now suppose that fis a Liapunov function for A in the sense
that the process f(£,) has bounded increments and satisfies

E[fE)—fEs|Fal 2 e on  {& ¢4}

for some ¢ > 0. Applying (1.8) with X, = f(E,,) and Y, = elz_4(&,) we obtain po-
sitive recurrence of A4 in the sense that

. ‘
Lol Z 1
llm:nf;"k.:o IA(&,) = m P-a.s
with C(.) = &~*(c+sup f(x)).
xed
From now on we assume that (X, Y) is a Liapunov system, and we fix § > 0.

Without loss of generality we assume f < o and write 4 = 4.

(1.11)  Remark on notation. Let S be a stopping time, i.e., a function on £2 with
values in {0,1, ..., 0} such that {S<n}e#, foreach n> 1. Then Fy wil
denote the o-field of all events 4 € & such that 4n {S< n} e #, for each n > 0
For any set B = 2x{0, 1, ...} we write

Tyobs = inf{n > SC)| (.,n) eB}

so that S+ Ty o 05 is the first entrance time into B from time S on. Now take the
set 4 = A, and its complement A°. We set So = To =0, and for n> 1 we define

Ty=T40 05..-1: R, = TA‘°03n-1+Tnv
where

Sn = (Tk+Rk)’
fou 1

the time of the nth return to 4°, is easily seen to be a stopping time. Ty + ... +T,
is the total time spent outside of A up to time S,.

Proof of the Theorem. (1.14) below implies that the average time spent in 4
is a.s. equal to 1 on U{S,. = o0}, On {S, < m < Su41} We have

1 E +T,.+1 Ti+ oo + 1o
¢ < .
£ II"( R < Tyt . +Tytn
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Noting (1.20) it is thus enough to show : the case p = 1. Now use (1.16) to conclude
Ti+ ... + Ty 1 : B2E[T?%,] < E[M#|%,) < liminf E[M}, y|%o]
<1- -a.8. . ol % T ,
lxmsup Tt . T S 1+C,3Pas on ({S, < 0} < Tanl%o
where
But this follows from (1.18) below since — < C+y implies ——— < < + LS
v xn S TrC TV E[MZ %ol = M3+ E Y (MEy1~ M2 Iig» /%o
‘We are now going to establish the two lemmas which were used in the preced- k=0
ing argument. . NZ" Jor—— )
(1.12) LemMa. Forp = 1,2 andm > 1 we have = Mo+ o [EIMEy s~ ME 91 Tir > 15]% o]
(1.13) E[TE,,|Fs]< C? Pas. on {8, <o}, ' < M2+cE[TAN%,],
with since
CH) = Co(L), C2*) = f2[X*()+cCH()]. E[ME,  — M2 %] = E[(Mi,1— M) |94
The same is true for m = 0 if we replace X* by X, in the definition of C*. SE[(Xpy1 =X < ¢

(1.14)  Remark. In particular, we have Ty, ; < oo P-a.s. on {S, < oo} for each . due to (1.1). This implies
m >0, ie., the system returns to 4 after each excursion to 4° The set A is thus E[T?|%,] < B~2(X2 +cE[T|%.)),
recurrent in the sense that P[(., #) € 4 infinitely often] = 1. We need the estimates
in (1.13) in order to show, via (1.18) below, that A is actually positive recurrent in
the sense of (1.8). (1.18)  LemmA. limsup

Proof of (1.12). Fix m > 0 and define T = T4y, 9y = Fs,en and
Zn = XSm+nI(Sm<w,T>u) n Z 0)

-

where the right side is finite for m = 0 and bounded by C?(.) for m > 1.

Lt 4T n + 7T < Cp P-as. on ({8, < o0}
n

Proof. Consider the increasing process

n
The process Z = (Z,), s is non-negative and adapted to (%,),0. Consider its Doob B, = 2 . (=0,
decomposition )
Z,=M,—4, (nz0) the associated predictable process (By)yso defined through Bg = 0 and
into a martingale (M,),>o and a predictable process (4),>0, Where (Ai)nno is B,,,—B, = E[Byy1—B,|Fs) = E[T,1|Fs,] (=0,

defined through 4, = 0 and
Appr~A, = E[Z,~Z,,,1%,).

and the associated variance process (V)y»0 With ¥ = 0 and

Due to (1.3) we have v, = Z E[T3|Fs..] @=1).
(115) An+1_An = ﬁI{T)Il)‘ . k=t
This shows that (4,) is in fact an increasing process, and that the martingale (M,) By a law of large numbers due to Neveu, resp. Dubins and Freedman, we have
is non-negative since M, = Z,+A4, > 4, = 0. Moreover, (1.15) implies 'B —B
m—_n = 0 P-as. on {Veo= 0};
(1.16) BT =B Ipory < Ar < My, n
&0

cf., for examp]e, [6], T. 65, p. 66. But forn > 1 (l 12) implies
where we set 4, = lim A, = 1i .
1:11,4 and M, ll:nM,,. But L < VsV = BT, F5 < C on {5, < o)

E[Mr|%ol < My = Xs,, so that n € V,yq < V;+nC? P-as. on ﬂ {Sw < 0}. Since ¥y < oo as. by (1.12),

and so we obtain
(1.17) . E[T1%,] < B~ X5,
which is finite for m = 0 and bounded by C(.) for m > 1 due to (1.4). This settles (1.19) li"m

we may thus conclude

13
B"—;l}l =0 P-as. on [){S, <o}
.on
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Due to (1.12) we have limsup%l < G, and this together with (1.19) yields (1.18).
n M .
Let us also note that (1.19) implies

i Tuts = (L4115

= 0;
" n

hence
(1.20)
due to (1.12).

on ({S, <o}

2. Convergence towards equilibrium

So far we did not impose any restriction on the trend of X at times where ¥ = 0.
Let us now add the assumption that the trend is “switched off at equilibrium”:

.1 EX,—X,1|#,]=0 on {Y,=0}
foreachn> 0

(2.2) ProrosiTiON. If (X, Y) is a Liapunov system which satisfies (2.1) then we
have convergence towards equilibrium in the sense that

2.3) X, -+ X, < X* Pas.,
and
2.4) Y, = 0 P-a.s.

The convergence in (2.4) is “quick” in the sense that

@.5) E[ZY 1.%,] X, < o0.

nr=0
Proof. Due to (2.1) the Liapunov process X = (X,),»0 iS NOW a non-nega-
tive supermartingale, hence a.s. convergent to some finite limit X,,. (1.8) and (1.4)
imply X, < X*; in fact we have X, < X* for all n-> ny(w). Now consider the Doob
decomposition X, = M,—4, of X into a martingale M = (M,) and a predictable
increasing process 4 = (4,). Due to (1.3) and (2.1) we have

An-H."“An = E[Xn"Xn-%l[ﬁn] 2 Yn P-a.s.

This impliesn;0 Y, < limd4, = A, and the right side satisfies E[d,|Fo] €
n

Xo <

since E[4,|% ] < E[M,|#s] = M, = X,.
§2.6) ExampLE. In the situation of example (1.10) the condition (2.1) takes the
orm

E[f(fn)’f(fn-&-ﬂfy"] =0 on {E,, eA}.

Thjs‘means that the Liapunov function f is now superharmonic on E and har-
monic on 4 (in the generalized sense of Doob [2]), and (2.5) says that the total
time spent outside of 4 has finite expectation.
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3. Adjusting one process to another

Let us now look at a diﬁ'e{ent sgtting. Consider two real-valued stochastic iaro-
cesses X = (X,)nz0 and X = (X,)y50, both defined over (@, #, P) and adapted
to (#n)s>0- Suppose that X is steered towards X in the sense that

@G.) E[Xy—Xo11|F3l > E[X,~X,,,|#,] on  {X,>X,},
(<) (<)

ie, X tends downwards (resp. upwards) more than ¥ as long as X is above (resp.
below) X This means that the process Z = (Z,.),,;,o with

Z, =X,—
is steered towards O iﬁ the sense that
(B2 Z,E[Zy~Zpe |F]> on  {Z, #0}.
Let us now formulate conditions which guarantee that the adjustment (3.2) leads
to a stabilizations of Z at 0. We assume that increments are bounded so that
(3:2) _ 1Zi=Zisil < (20
for some constant ¢. In addition to the sign rule (3.2) for the direction of the trend,
we assume that its absolute value satisfies
(33) |E[Zy = Zy41 1| = h(1Za1)

for some monotone function 4 on [0, ) with 2(0) = 0 and 2> 0 on (0, o) (we
have & < ¢ due to (3.2)). Now (1.8) implies that the procedure leads at least to po-
sitive recurrence in the sense that

——lla >0 witﬁ a = 2¢/h(c).

-1
1S
(3.4) CoRrOLLARY. liminf 72 Iyz,<c) =
n =0

Proof. On {Z, > c} we have

E[lzn]_lzn-l-l”g:n] = E[Zn"zn+1|fn] = h(Zn) = h(C),

and in the same way we have
(3.5 ElZ4]=1Zyss [1F0] 2 h(0)

on {Z, < —c}. This means that (|Z,[),=o is a Liapunov process for the process
Y, = h(e)lyzise (n > 0). Now apply (1.8)-
Let us now try to get convergence of Z to 0. We assume Z, € L* (n >

an(-) = 2Z,,E[Z,,—Z,,+1|57,, _E[(Zn_zni-l)zlg:n] = '_Cn(-)
0 for large enough Z,,

0) and

(3.6)

with ¢,(.) > 0 and Y. ¢,(.) € L'. Note that we bave a, >
n=0

so that (3.6) essentially means that the “variance is more and more tuned down”
near 0.

(3.7  ProposITION. (3.6) zmphes Z, -0 P-as.
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Proof. Since a, = E[Z2—2Z}%,,|#,], the Doob decomposition of (Z2),s, has

the form
Z2 = M,~ Zak—S+ch,
k=1

where
n

n
"~

Sn = Mn_v>w](ak+ck) > —E‘,ck
k=1

is a supermartingale bounded from below in L', hence a.s. convergent to some
finite limit. This implies the convergence of Z7, resp. Z, to some finite limit and,
in particular, Z,—Z,,,; — 0 P-a.s. Now the lemma of Hunt yields

E[Zy,~2Z, 1 |F 1] ~ 0

due to (3.2); cf., for example, [7], p. 143. Thus (3.3) implies A(|Z,[) — 0, hence
1Z,] > 0 P-as.

(3.8) Remark. The argument for almost sure convergence of (Z7) is included
only for the sake of completeness, since I learned from D. Siegmund that it is con-
tained in Theorem 1 of [§]. Condition (3.6) means in fact that (Z7?) is an “almost
supermartingale” in the sense of [8].
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HEKOTOPBIE 3AMEYAHHS IO IOBOJAY 3AKOHA
BOJbINUX YHCEJ B R

M.VY. TAD®VPOB

Mamen uth wm, AH Y3.CCP, Tawxenm, CCCP

Ilycre
(1) X,_,Xz,...,X,,,..‘; Xl= (Xtu--‘,Xid)

IIOCTIE{OBATENBHOCTD HE3ABMCHMBIX, OFJUHAKOBO PacIpefieNICHHbIX CyJaiHbIX BEK-
TOPOB IpPMHMMAFOIIHX 3HAYEHHA M3 EBKIMEOBOIO IpocTpanctsa R, d > 1.
O6oanaunm uepes a = (4, ..., @;) BEKTOP MATEMaTHYECKUX 0YKUaHMH B B —
KOBAPHALMOHHYIO MaTpuily Bexropa X;.
Ecmu x € R?, 10 mosoxum

|x] = l/xl'*' L+xi .

Iycts S, = Xy + ... +X,, &£— moboe momoxmremsnoe wncio, I,(¢) mHma-
Karop cobwmua {|S,—na| > ne}. Torma

o0
Ve = Zln(a)
n=1
ecTh ,,CUNTAIONIAsA BEUUMHA’’, T.€. YHCIO OCYIIEeCTBIEeHII cobprrust {|S,—na| >
> ne}.

JIerko MOMSTH, YTO KOHEUHOCTs HIOUTH BCIOAY ,,CUMTAOMEN BEMHTMHED” 7,
(ns mmoBoro & > 0) o3mayaer. BHUIOJHEHHE YCHICHHOTO 3aKOHA GONBLUMX YHCET
[ CIy4YalHBIX BEKTOPOB IIOCTENOBATEILHOCTH .

Timeer MECTO CieNyIOLias TEOPEMa, ABJIAIOMIAACT MHOTOMEDHBIM aHATOrOM
omuoro pesynprara II. Oppema [4].

TeopemA 1. Jlan mozo, umobs npu awbom guxcuposanrion &> 0 Ey, <
Heobxo0umo ¥ Oocmamoyno '

EX, =a, EIX|* <.

OueBHHO, UTO B CHIy MIBECTHOH Jemmbl Bopesns—KoHTEIN U3 TeopeMBI 1
CIeTyeT IPAMEHMMOCTS YCHIEHHOTO 3aK0Ha GOIBIINK WHCEN MM CIyJalHBIX BEK~
TopoB mocnemoBatensHocta (1).
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