

MATHEMATICAL STATISTICS BANACH CENTER PUBLICATIONS, VOLUME 6 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1980

ON THE DYNAMIC STOCHASTIC APPROXIMATION

VÁCLAV DUPAČ

Charles University, Prague, Czechoslovakia

ASSUMPTIONS:

- (i) For $n \in \mathbb{N}$, $\mathbb{R}^0(n, x)$ is a Borel (= \mathcal{B}_k) measurable mapping from E_k into E_k .
- (ii) $\{\mathscr{F}_n, n \in \mathbb{N}\}\$ is a non-decreasing sequence of σ -fields of events.
- (iii) For $n \in \mathbb{N}$, $G^0(n, x, \omega)$ is a $\mathscr{B}_k \times \mathscr{F}_n$ -measurable random mapping from E_k into E_k , independent of \mathscr{F}_{n-1} and such that $EG^0(n, x, \omega) = 0$, $x \in E_k$.
- (iv) There is a positive definite matrix C and a $\lambda > 0$ such that $(CR^0(n, x), x)$ $\leq -\lambda(Cx, x)$ for all $x \in E_k$, $n \in N$.
- (v) $|R^0(n,x)|^2 + E|G^0(n,x)|^2 \le K(1+|x|^2)$ for all $x \in E_k$, $n \in \mathbb{N}$ and some K>0.
- (vi) For $n \in N$, $R^0(n, x) = Bx + \delta(n, x)$, where B is a $k \times k$ matrix (of constants) such that all its eigenvalues have negative real parts, and $\delta(n, x) = o(|x|)$ uniformly in $n \in N$ for $x \to 0$.
 - (vii) $\lim_{n\to\infty, x\to 0} E(G^0(n, x, \omega)G^{0T}(n, x, \omega)) = S_0$ exists; S_0 non-singular.
 - (viii) For some $\varepsilon > 0$,

$$\lim_{r\to\infty}\sup_{|x|r\}}\big)=0.$$

(ix) For $n \in N$, Q(n) is a known $k \times k$ matrix and q(n) a k-dimensional vector (unknown in general) such that

$$\lim_{n\to\infty}n^{\alpha}Q(n)=0,\quad \lim_{n\to\infty}n^{3\alpha/2}q(n)=q_{\infty},$$

for some $\frac{1}{2} < \alpha < 1$ and $0 \le q_{\infty} < +\infty$.

(x) $\theta(n) \in E_k$, $n \in N$, satisfy the difference equation

$$\theta(n+1)-\theta(n)=Q(n)\theta(n)+q(n), \quad n\in N.$$

(xi)
$$R(n, x) = R^{0}(n, x - \theta(n)); G(n, x, \omega) = G^{0}(n, x - \theta(n), \omega), n \in \mathbb{N}, x \in E_{k}.$$

(xii) For fixed a > 0, $x \in E_k$ and α from (ix) define the sequence $\{X(n), n \in N\}$ by the recursive formula

$$X(1) = x$$

110 V. DUPAČ

$$X^*(n) = (I+Q(n))X(n),$$

$$X(n+1) = X^*(n) + an^{-\alpha} \{R(n+1, X^*(n)) + G(n+1, X^*(n), \omega)\}.$$

(This is the dynamic Robbins-Monro procedure for tracking $\theta(n)$, the unique root of R(n, x).)

Theorem. For $n \to \infty$ and every $x \in E_k$, the distribution of $n^{\alpha/2}(X(n) - \theta(n))$ tends to the normal distribution with mean value $a^{-1}B^{-1}q_{\infty}$ and the covariance matrix

$$S = a \int_0^\infty e^{Bv} S_0 e^{B^T v} dv.$$

Presented to the semester
MATHEMATICAL STATISTICS
September 15-December 18, 1976

icm[©]

MATHEMATICAL STATISTICS BANACH CENTER PUBLICATIONS, VOLUME 6 PWN—POLISH SCIENTIFIC PUBLISHERS WARSAW 1980

ON A GENERALIZATION OF A THEOREM OF W. SUDDERTH AND SOME APPLICATIONS

A. ENGELBERT and H. J. ENGELBERT
Friedrich-Schiller-Universität, Sektion Mathematik, Universitätschochhaus,
69 Jena. D.D.R.

Introduction and basic definitions

1. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and $(\mathcal{F}_n)_{n \geq 0}$ an increasing family of sub- σ -algebras of \mathcal{F} . We shall consider a sequence $X = (X_n)_{n \geq 0}$ of (real-valued) random variables which always is assumed to be adapted to the family $(\mathcal{F}_n)_{n \geq 0}$. A nonnegative (possibly, infinite) random variable T is called a *stopping time* (of the family $(\mathcal{F}_n)_{n \geq 0}$ of sub- σ -algebras of \mathcal{F}) if for all n the event $\{T = n\}$ belongs to \mathcal{F}_n . By $\overline{\mathbb{M}}$ we shall denote the set of all stopping times and by \mathbb{M} the set of all a.s. finite stopping times.

Let $T \in \overline{\mathfrak{M}}$. Define the random variable X_T by

$$X_T(\omega) = \begin{cases} X_n(\omega) & \text{if} \quad T(\omega) = n, \\ \limsup X_n(\omega) & \text{if} \quad T(\omega) = \infty. \end{cases}$$

Let us introduce the class $\overline{\mathfrak{M}}(X)$ of all stopping times T satisfying the condition that the integral $\mathbb{E}X_T$ exists, i.e. $\mathbb{E}X_T^+ < \infty$ or $\mathbb{E}X_T^- < \infty$. (1) Finally, we set $\mathfrak{M}(X) = \overline{\mathfrak{M}}(X) \cap \mathfrak{M}$.

2. In the problem of optimal stopping (cf. Shiryaev [6] or Chow, Robbins, and Siegmund [4]) one considers the value(2)

$$V = \sup_{T \in \mathfrak{M}(X)} \mathbf{E} X_T$$

which is interpreted as the maximal gain that can be obtained by stopping the reward sequence $(X_n)_{n\geq 0}$ in an optimal way. Analogously, for any stopping time $S\in\mathfrak{M}(X)$ the value

$$V_S = \sup_{T \in \overline{\mathcal{D}}(X)} \mathbf{E} X_T$$

[111]

⁽¹⁾ For any real number x, we set $x^+ = \max(0, x)$ and $x^- = \max(0, -x)$.

⁽²⁾ Of course, $\sup \emptyset = -\infty$ and $\inf \emptyset = +\infty$.