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X*@p) = (I+QM)X (M),
X(n+1) = X*(m)+an*{R(n+1, X*(n)+G(n+1, X*(n), w)}.
(This is the dynamic Robbins-Monro procedure for tracking 6(n), the unique root
of R(n, x).)
THEOREM. For n— oo and every x € Ey, the distribution of n*/? (X(Iz)—~0(n))
tends to the normal distribution with mean value a=*B~1q,, and the covariance matrix

S=a S €Sy e 0,
0
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Introduction and basic definitions

1. Let (2, #,P) be a probability space and (#,),»0 an increasing family of

sub-c-algebras of #. We shall consider a sequence X = (X,),»o of (real-valued)

random variables which always is assumed to be adapted to the family (#n)nso-

A nonnegative (possibly, infinite) random variable T is called a stopping time (of

the family (#,)ns0 Of sub-c-algebras of &) if for all nthe event {I' = n} belongs
- to #,. By M we shall denote the set of all stopping times and by It the set of all

a.s. finite stopping times. '

Let T‘e—ﬂﬁ. Define the random variable Xr by

Xn(w) if T((l)) =n,
Xr(®) = | 1jm supX,(w) if T(w)= 0.

Let us introduce the class Wi (X) of all stopping times T satisfying the condition
that the integral EXy exists, i.e. EX# < oo or EX7 < co.(*) Finally, we set 0(X)
= MX) n M.

2. In the problem of optimal stopping (cf. Shiryaev [6] or Chow, Robbins, and
Siegmund [4]) one considers the value(?)

V= sup EXy
Tedi(x)

which is interpreted as the maximal gain that can be obtained by stopping the
reward sequence (X,),»o in an optimal way. Analogously, for any stopping time

S € M(X) the value
Vs= sup EXp
TeT(X)
29

(Y For any real number x, we set x* = max(0, x) and x~ = max(0, —x).
_(») Of course, sup @ = —co and inf@ = +c0.
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is interpreted as the maximal gain which can be obtained by stopping the reward
sequence (X;)nso after S. We now introduce the value
T}mH = inf Vs.
SeM(x)
This value can be seen as the maximal gain that can still be obtained by stopping
the reward sequence (X,),»o after an arbitrarily long period of time.

3. In the present note we investigate the value at time infinity V. We give an
explicit expression for evaluating it. Using this characterization of the value at
infinity ¥,,, we come to necessary and sufficient conditions for almost sure con-
vergence of a sequence of random, variables (X,),»o. Connections with other work
are pointed out. Our results are stated under most general assumptions. The main
result of the paper is Theorem 8.

The proofs will be omitted. They will be published elsewhere,

4, Before formulating the main result of the paper we still introduce some de-
finitions and notations.

Obviously, the set 9% is partially ordered by the relation »: T' > § if T(w)
> S(w) for all w € 2. Moreover, the ordered set is directed since thh two stopping
times § and T the random variable max(S, T) also is a stopping time. In general,
the ordered set M(X) need not be directed, nevertheless it is natural to introduce
the notation

(1)  limsup EXy =

Te(X)

inf sup EX.
SeTUX) TeTUX)
T8

In our notation we thus have
V, = lim sup EX.
TeM(X)
Analogously, we define

2) liminf EXr = sup

Te(x)

inf EXy.
S0 TeMX)
738
It is obvious that ~liminf EXy is equal to the value at infinity of the se-
TeM(x)
quence (—X,)nzo-
We say that the limit of the generalized sequence EXy for I'e IN(X) exists

if
lim inf EXy = lim sup EXry.
TeM(x) TeiN(X)
In this case we write lim EXy for this value.
TeN(X)

5. Let us introduce the class C* of all random sequences X = (X)uso satisfying
the following two conditions:

o
@

ElimsupX, exists,
n

lim sup EXy < 4 0.
Te(X)

icm
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By definition, the class C~ consists of all random sequences (X)nzo such that
(—=X.)nzo belongs to C*. Furthermore, we set C = C+nC-.

6. Condition 5(1) means that the stopping time identically equal to + oo belongs
to M(X).

Suppose now that (X,) or (—X,) is satisfying condition 5(1). Using Lévy’s
martingale convergence theorem, it can easily be seen that for any SeIN there

“exists T'e IM(X) such that T > S. Thus the ordered set IM(X) is directed and,

moreover, the sets {TeM(X): T > 8} in definitions (I) and (2) are nonempty.

Inequalities and equalities for the value at infinity

We begin with the following result which was proved by W. Sudderth [7] in the case
M(X) = M, using Lévy’s martingale convergence theorem.

7. TueoreM (1) If ElimnsupX,, exists then

ElimsupX, < lim sup EX7.
n TeM(X)
(2) If EliminfX, exists then
liminfEX7 < Ellmme
Tel(x)

Of course, (2) follows applying-(1) to (—X,,),.;o. Statement (1) is well known

_in optimal stopping (cf. Shiryaev [6] or Chow, Robbins, and Siegmund [4]): Re-

placing M(X) by M(X), we do not change the value sup EXr. But by assump-
tion oo e M(X) and thus R

ElimsupX, € sup EXy for all SedM.
n TeM(X)
T>S
Now we formulate the main result of the present note.

8, TueOREM. (1) Suppose that (X,)nso belongs to C*. Then
lim sup EX7 = Ehm supX,.
Te(X)
) If (X0 belongs to C~ then
lim inf EXp = Ellm infX;,.
TeI(X)

Theorem 8 was earlier stated and proved by W. Sudderth [7] but only under
the .assumption for statement (1) (resp. statement (2)) that the random sequence
(X)u»0 is bounded above (resp. below) by an integrable random variable. In this
case, the proof of Theorem 8 is rather simple and, in fact, is an easy consequence
of Theorem 7 and Fatou’s lemma. Recently, R. Chen [3] generalized this result
assuming only that the family (X})rem (resp. (X7)rem) is uniformly integrable.
His proof is only a slight modification of that of W. Sudderth [7]. Our proof of
Theorem 8 is not quite trivial and requires some basic ideas of the theory of optimal
stopping.

8 Banach
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9. Remark. It should be noticed that statement (1) of Theorem 8, in general, is
not true if limsup EXy = +oco. W. Sudderth [7] gave an example of a uniformly

TeM(X) B , .
integrable sequence (X,),so such that limX, = 0 as. but Iu;};lllp EX, > 1. This
n 'E;

example does not contradict Theorem 8 since one easily verifies that, in fact,
limsup EXy = +co. Of course, the equality in statement (1) (resp. statement (2))
TeM

of Theorem 8 also holds if ElimsupX, = + oo (resp. EliminfX, = —o0) (cf. The-

orem. 7).
We now consider one special case in which Theorem 8 is true without the

condition that (X,)a»o belongs to C* (resp. C~). Let &, be the smallest o-algebra
containing &, for all n. For any T e, define the o-algebra &y as the collec-
tion of all 4 € F,, such that An{T = n} belongs to &, for every n > 0.

10. THEOREM. Suppose that for some T € MM we have Fr = F .
(1) If ElimsupX, exists then
n

limsup EXyp = EhmsupX .
TeM(X)

(2) If EliminfX, exists then
n

liminf EXy = Ellmlan .
TeM(X)

11.  Remarks. (1) In particular, the condition of Theorem. 10 is fulfilled if &, =
for all n > 0. In this case It consists of all nonnegative random variables dcﬁned
on (2, #,P).

(2) It is interesting to notice that the value limsupEXy does not change if we

TefR(X)
replace (#,),50 by a new family (%,),»0 of sub-o-algebras of &%. The only con-

ditions are that (X,),»o belongs to C* for both (#,),50 and (%,),»0 and, of course,
F¥c @, for all n >0 where F¥ is the smallest ¢-algebra relative to which X,,
is measurable for every m < n. This follows immediately from Theorem 8. The

analogous remark is valid for liminf EXy and lim EXy if it exists.
TeM(X) Tefi(x)

(3) Now we consider the case where %, = & for all # > 0. Using Theorem

10, we observe that llmsup EX, with respect to (%,),»0 cannot be equal to -+ o0
TefR(x)

if (X,, #,) belongs to C*. Thus, if (X, , #,) belongs to C* the value ]‘i’%?}“? LXy
(X

does not change by passing over to (%,),50. In particular, thisis true for (#F)sso0
= (‘9' ﬁ)n>0~

(4) Without the condition that (X,, #,) belongs to C* the latter remark does
not hold. Indeed, consider the example given by W. Sudderth [7] (cf. Remark 9).

We then have limsup EXy = oo with respect to (.V ¥)nz0. However, by Theorem
TeMm(xX)

icm
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10 we obtain

limsup EXy = EhmsupX =0
TefR(x)

with respect t0 (%,)ys0.

(5) Suppose now that (X, %,) is a Markov sequence and (F,),> is such that
Fy =F, < 9, for all n > 0, Then it can be proved that (X, » 9,) belongs to C*
if (X,, #,) does. Therefore, if (X,, #,) belongs to C* then the extension of (%,)us0

to (#,)n»0 does not change hmsup EX;.
TeD(x)

Necessary and sufficient conditions for almost sure convergence

Now we investigate the connection between equalities for the value at infinity and
almost sure convergence of random sequences. To begin with, we formulate a suffic-
ient condition.

11. THEOREM. Let (X,),5 0 be a random sequence sﬁch that Eliniian,, and Elimsup X,

exist. Suppose, moreover, that lim EXy exists. Then
Tem(X)

ElirnsupX,, = lim EX, = Elimian,, .

If one (and therefore all) of the values EhmsupX,,, lim EXr, and Ehmme is
TeDi(X)
finite then limX, exists a.s. and is zntegrable.
n

This result follows from Theorem 7.
We now apply Theorem 11 to generalized regular supermartingales.

12. DEerNITION. ‘A random. sequence (X,),»o is called a generalized regular super-
martingale if for all S, T'e M(X) such that S < T we have

EXy < EX;.

The following lemma shows that in the above definition expectations can be
replaced by conditional expectations.

13. LemMA. A random sequence (X,)n»o is a generalized regular supermartingale
if and only if
E(Xylys) < Xs a.s.

Jor all S, T e M(X) with S < T and such that — oo < EXp and EXs < + 0.

14. THEOREM. Let (X,)p»o be a generalized regular supermartingale. Suppose that
EliminfX, and ElimsupX, exist. Then
n n

EliminfX, = ElimsupX,
n n
and this value is equal to inf EXy. If one (and therefore all) of the values EliminfX,,,
: TelR(x) . n

8%
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ElimsupX,, and inf EXp is finite, then
n TeM(X)
limX, exists a.s.
n

and is integrable.
We next state the connection between generalized regular supermartingales
and uniform integrability properties.
15. TrEoREM. Let (X,),so0 be a generalized regular supermartingale. The following
conditions are equivalent:
(1) EliminfX, and ElimsupX, exist and one (and therefore all) of the values
n n

EliminfX,, ElimsupX,, and inf EXp is not equal to —o0.
n n TeM(X)

(2) The family (X7)reamqxy is uniformly integrable.

It seems that the implication (1) — (2) was not known previously.
16. COROLLARY. Let (X,)n»o be a generalized supermartingale (i.e. BX, exists
and E(X,p.1|F ) < X, for all n > 0). The following conditions are equivalent:

(1) (X7)uso is uniformly integrable.

(2) (XT)rem is uniformly integrable.

3) (X nso is regular and Tin;t; EXy > —o0.

€:

4) (X)uso is regular and EliminfX, exists and is not equal to — 0.
n

(5) (Xwnso is regular, EliminfX,, and ElimsupX, exist, and ElimsupX, > — 0.

n n n

If one (and therefore all) of these conditions is satisfied then limX, exists a.s.
and ElimX, > —oo. If, moreover, there exists T €W such that ;JX;“ < oo then
limX, 1’.; integrable.

n

We next come to the general situation and give necessary and sufficient con-

ditions for almost sure convergence.

17. THeOREM. Let (X,),»0 belong to C. The following conditions are equiv-
alent:
(1) lim EXy exists.
Te(x)

(2) imX, exists a.s.
n
If one of these conditions is satisfied then limX, is integrable and
n

lim EXy = ElimX,.
TeM(X)
This theorem looks like Lebesgue’s theorem on changing the order of limit
and integral. The proof immediately follows from Theorem 8.
From Theorem 10 one derives the following result.
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18. THEOREM. Suppose that for some T € M we have Fr = F, and let EliminfX,
n

and ElimsupX,, exist. The following conditions are equivalent:
n

(1) lim EXyp exists and is finite.
Te(X)

(2) imX, exists a.s. and is integrable.
n .

If one of the conditions is satisfied then
lim EXp = ElimX,.

TeM(x) n )
In general, the existence of lim EX7 is equivalent to the equality EliminfX,,
Tel(X) n

= ElimsupX, and in this case the values occurring are equal.
n

Theorem 18 can be applied to the case where %, = & for all n> 0, ie. if
the parameter T for the generalized sequence EXy is ranging over all nonnegative
finite random variables such ihat the integral of X makes sense.

Connection to amarts

Next we consider the set I, of all bounded stopping times 7, i.e. T < N for some
integer N > 0. Let M,(X) be the collection of all T &M, such that EXy exists.
Analogously to the case of IN(X) we define

limsupEXy = inf sup EXp
TeRb(X) Sefits(X) TeDp(X)
T=s
and
) liminf EXr = sup inf EXj.
Tedts(X) SeMb(X) T E;?;"é"o

We say that the limit of EXy, where T ranges over T,(X), exists if

liminf EXy = limsup EXp
TeIMp(X) TeDis(X)

and write lim EXp for this value.
TeMa(X) i _
The following theorem was proved by R. Chen [3], although his proof is not

the simplest.
19. TueoreM. (1) If (X7)u»o is uniformly integrable, then

limsup EXy < limsup EXr.
TeM(X) Teo

) If (X})uso is uniformly integrable then

liminf EXy < liminf EXr.
Tes Tedi (X)
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20. DermviTiON (cf. Edgar and Sucheston [5]). A random sequence (X;,),o is called
a (generalized) amart if lim EX; exists and is finite.
TeMs(X)
As a direct consequence of Theorem 7 and Theorem 19 we obtain
21. THEOREM. Let (X,),»0 be a uniformly integrable amart. We then have:

(1) lim EXy exists and is finite.
TeD(X)

(¥)] limX w exists a.s. and is integrable.

®3) hm EXT = lim EX; = EllmX
Teity

Statement (3) does not remain valid without the assumption of the uniform
integrability.
22. ExamprE. Let (Y,)p»o be a sequence of independent random variables such
that P(¥, = 1) = P(¥, = 0) = £ Define X, = 2" ¥; ... ¥, and &, = &¥. Then
(XDn>o is a nonnegative martmgale,‘and hence an amart, which is not uniformly
integrable. Obviously, IimX =0 as. and lim EX; = 1. From Fatou’s lemma

TelMs
we obtain EX7 < 1 for all TeM. By Theorcm 8,
to zero.

We proceed with a lemma of R. Chen [3].

23. LemMmA. (1) Let (X{)rem, be uniformly integrable. Then

limsup EXy <
Telty
@ If (X)rems, is uniformly integrable, then
Elimian,, < liminf EX 7.
Telts
This lemma, Theorem 8, and Theorem 21 yield the following theorem which
is due to R. Chen [3].

lim EXp exists and is equal
(X)

< E lim sup X,.

24. TueoreM. Let (X1)rem, be uniformly integrable, The following conditions then
are eguivalent:

1) (X)nso is an amart.
(@) im EX7 exists and is finite.
Tem

3) li]:lX,, exists a.s. and is integrable.

The next result, known as the amart convergence theorem, is due to Austin,
Edgar, and Tonescu Tulcea [1] and R. V. Chacon [2].
25. THEOREM. Let (X,),50 be an amart such that sup E|X,| < 0. Then 1111’1X exists
a.s. and is integrable.

It is clear that the theorem also is true if we 6nly assume limsup E|X;| < + co.

n

The converse of this theorem is false as the following example shows.

icm°®
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26. EXAMPLE. Let (X3),»0 be as in Example 22 and define
ZZH-Fl = Xn and ZZn =0

for all n 2 0. Then hmZ = 0.as. but liminfEZy = 0 and limsup EZp = 1.

Tedty Tes
We now present the following interesting result.

27. THEOREM. Let (X,),»0 be an amart such that limsup E|X,| < co. Then lim EXp
n TeN(X)

exists and is finite.

It should be noticed that under the assumptions of Theorem 27 lim EXr
TeM(X)

and lim EX7 are not equal in general (cf. Example 26). Moreover, the converse
Telty

statement to Theorem 27 does not hold, i.e. if lim KEXr exists and is finite then
TeM(X)

(X)n»o need mnot be an amart (cf. Example 26). Unfortunately, the proof of this
theorem is based on the amart convergence theorem. A direct proof is not known
to us. However, a direct proof of Theorem 27 would be of interest because Theorem
27 and Theorem 8 imply the amart convergence theorem.

The proof of Theorem 27 is based on Theorem 8 and Theorem 25 using the
following lemma which is interesting in its own right.
28. LemMA. (1) Suppose hmsup EX; < 0 and limsup EXp < . Then (Xp)nzo

Tedip(X)
belongs to C*.

(2) Suppose hmsup EX; < oo and liminf EXy > — 0. Then (X,)a»o belongs
TeDo(X)
to C~.
Summarizing the results of the paper, we conclude that the class of random
sequences (X;),»o satisfying the property that lim EX; exists and is finite is, pos-
Te(X)

sibly, more interesting than the class of the so-called amarts. In particular, under the
assumption limsup E{X,| < co the class of amarts is smaller and therefore, in our
n

opinion, the notion of an amart too restrictive. Finally, it should be noticed the
consequence of Theorem 27 that lim EXp exists and 1s finite for every super-
TeM

martingale (X,),»o satisfying sup EX; < co. Before, this result was not known.
n
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Introduction

1. Let (2, #) be a measurable space and Q, P two probability measures on it.

The probability measure Q is called absolutely continuous with respect to
P (Q < P)if for every A € # such that P(4) = 0 we have Q(4) = 0. The prob-
ability measures @ and P are called eguivalent (Q ~ P) if both conditions Q < P
and P < Q are satisfied. Finally, we say that Q and P are singular (Q 1 P) if there
exists a set N € & such that Q(N) = 0 and P(N) = 1.

2. We now assume that we are given an increasing family (#,),», of sub-o-algebras
of & satisfying the condition that & is the smallest c-algebra containing &, for
all 7 > 0. Denote the restrictions of @ and P on the c-algebra &, by Q, and P,,
respectively. The problem which will be studied here is the following. Suppose
Q, < P, for every n > 0. We want to find conditions for absolute continuity and
singularity of Q@ and P.

3. Since Kakutani’s famous work [3] on the equivalence of infinite product mea-
sures many authors have been investigated equivalence and singularity of certain
probability measures. One of the fundamental results is the equivalence-singularity
dichotomy for Gaussian measures on function spaces of J. Feldman [1] and J. Hajek
[2]. Many efforts were done to give conditions for absolute cor.nuity of special
processes (for example, diffusion processes) and to find the explicite expression
of the Radon-Nikodym derivative (cf: Lipcer and Shiryaev [4]). Problems of this
kind play a fundamental role in many areas of probability theory and, above all,
in statistics.

In the present paper we shall prove a general theorem giving necessary and
sufficient conditions for absolute continuity Q < P and singularity @ | P in terms
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