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Introduction

1. Let (2, #) be a measurable space and Q, P two probability measures on it.

The probability measure Q is called absolutely continuous with respect to
P (Q < P)if for every A € # such that P(4) = 0 we have Q(4) = 0. The prob-
ability measures @ and P are called eguivalent (Q ~ P) if both conditions Q < P
and P < Q are satisfied. Finally, we say that Q and P are singular (Q 1 P) if there
exists a set N € & such that Q(N) = 0 and P(N) = 1.

2. We now assume that we are given an increasing family (#,),», of sub-o-algebras
of & satisfying the condition that & is the smallest c-algebra containing &, for
all 7 > 0. Denote the restrictions of @ and P on the c-algebra &, by Q, and P,,
respectively. The problem which will be studied here is the following. Suppose
Q, < P, for every n > 0. We want to find conditions for absolute continuity and
singularity of Q@ and P.

3. Since Kakutani’s famous work [3] on the equivalence of infinite product mea-
sures many authors have been investigated equivalence and singularity of certain
probability measures. One of the fundamental results is the equivalence-singularity
dichotomy for Gaussian measures on function spaces of J. Feldman [1] and J. Hajek
[2]. Many efforts were done to give conditions for absolute cor.nuity of special
processes (for example, diffusion processes) and to find the explicite expression
of the Radon-Nikodym derivative (cf: Lipcer and Shiryaev [4]). Problems of this
kind play a fundamental role in many areas of probability theory and, above all,
in statistics.

In the present paper we shall prove a general theorem giving necessary and
sufficient conditions for absolute continuity Q < P and singularity @ | P in terms
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of almost sure convergence with respect to the probability measure @ of the den-
sities dQ,/dP,. In contrary to most of other papers, in general we only assume
0, < P, (instead of Q, ~ P,) for alln > 0. In many situations the characterization
of absolute continuity and singularity proposed here is advantageous and leads to
easy proofs of known and unknown results.

From our general theorem we can derive necessary and sufficient conditions
for absolute continuity and singularity in “predictable terms” in the sense of the
modern theory of stochastic processes. The conditions are very similar to that of
Kolmogorov’s three series theorem. The development of these problems needs
some essential facts from martingale theory. Here we do not treat these questions,
The authors intend to publish a paper on effective criteria for absolute continuity
and singularity of the type described above.

In this note we only present some general examples illustrating the basic theorem.
First we consider the independent case proving Kakutani’sftheorem. As a second
example we give another proof of Feldman’s [1] and Hajek’s [2] dichotomy for
Gaussian measures. Then we investigate the Markov case. For non-homogeneous
discrete time Markov processes (X,),»o With values in arbitrary state spaces we shall
prove that either @ < P or Q | P (of course, if @, < P, for all n > 0) if (X,)uz0
is a 0-1 sequence with respect to Q.

For homogeneous Markov chains we can say even more. For example, let
{X)n=o be stationary and ergodic with respect to Q. Then the alternative @ < P
or @ | P holds. The assumption of stationarity and ergodicity can still be weakened.
In particular, if the state space is countable, then it is sufficient to know that except
for, possibly, transient states there is one class of positive recurrent states with
respect to Q.

The main theorem

Let Z, be the Radon-Nikodym derivative dQ,/dP,, i.e., the density of Q, with
respect to P,. By Z,, we denote the (possibly, infinite) random variable limsup Z,.
n

It is well known (and easy to verify) that (Z,, #,, P) is a nonnegative martingale.
Thus the limit of (Z,),50 exists P-a.s. and of course equals to Z,, P-a.s. By Fatou’s
lemma we have(*) EpZ, < 1. In particular, P(0 € Z, < ) = 1. Recall the
well-known facts that the conditions @ < P, EpZ,, = 1, and (Z,, #,, P) uniformly
integrable are equivalent. In the following theorem we give the explicit form of the
Lebesgue decomposition of Q with respect to P. As an immediate consequence
'we obtain neces..ry and sufficient conditions for @ < P and @ 1P in terms of al-
most sure convergence.

4. THEOREM. Suppose Q, < P, for all n > 0. We then have the Lebesgue decompo-
sition

03) = {Z,aP+R(B)
B

() By Eq and E; we denote the expectation with respect to Q and P, respectively.
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for all Be %, where P | R. Moreover, the following conditions are satisfied:
) P(Z, < ) =
() R(Z, <) = 0.
Proof. By Fatou’s lemma,

Sz dP < Q(B)

for all Be #, and n > 0, and hence for all B e %. We now set

R(B) = 0(B)- {Z,aP
B

for all B € #. Then R is a non-negative and finite measure on &. For proving the
theorem it now suffices to verify that conditions (1) and (2) hold. Condition (1)
was mentioned before the formulation of the theorem. To prove (2) we first no-
tice that there exist at most countably many constants ¢ such that P(Z, = ¢) > 0.
Therefore it suffices to verify that
R(Z,<c)=0

for all finite ¢ > 0 such that P(Z] = ¢) = 0. We have

{Z, < ¢} € liminf {Z %< c}

n

and P-a.s.
{Z, < ¢} =1im{Z, < c}.

Using Fatou’s lemma, from this follows
R(Z, < ©) < liminf@(Z, < o)-limsup | Z,dP.
4 n {Zn<c}

Hence

R(Z, < o) < liminf[@(Z, < )— § Z,dP] =0
n {Zn<c}

and the proof is finished.
5. THEOREM. Suppose Q, < P, for all n > 0.

(1) @ <P if and only if O(Z, < ) = 1.

@2) QLP if and only if Q(Z, = ) = 1.

Proof. Since P(Z, = 0) =0, from @ <P follows Q(Z, = o) =0 and
therefore Q(Z, < ) = 1. Conversely, assume Q(Z., < ) = 1. Then from
Theorem 4 we obtain

Q(B) = QB {Z,, < }) = § Z,,dP.
B

Thus QO < P:

We now verify (2). Let Q L P. By Theorem 4, Q(B) = R(B). Using 4(2), we
obtain Q(Z,, < «) = 0and hence Q(Z., = ) = 1. Conversely, if Q(Z, = o0)=1,
then Theorem 4 implies Q(B) = R(B) for all Be &. Since R1 P we get Q1P
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6. COROLLARY. Let Q, ~ P, for all n > 0.
(1) @ ~ Pifand only if Q(Z, < ) =P(Z,>0)=1
@ QLPifand only if O(Z, =) =1 or P(Z, = 0) = 1.
Proof. Theorem 5 can be applied to the densities
_da 1
a0,  Z,
7. COROLLARY. Suppose Q, < P, for all n > 0. Then imZ, exists and is finite

Z, for n 2 0.

on the set {supZ, < oo} Q-a.s.
Indeed, limZ, exists and is finite P-a.s. But in view of Theorem 4, for every

BeZ with B {Z, < o} = {supZ, < 0}, we have

0w = { z,ap.

B
Setting B = {liminfZ, < limsupZ, < o0}, we obtain Q(B) = 0.
n n

Absolute continuity on &,

A non-negative (possibly, infinite) integer-valued random variable 7T is called
a stopping time (of the family (% ,),50 of sub-c-algebras of &) if the event {T = n}
belongs to %, for all n > 0.
Let T be a stopping time. By % we denote the ¢-algebra of events 4 from
& such that An{T = n} belongs to &, for all # > 0. Let Qp and Py be the restric-
tions of Q and P on Fr, respectively.
We now give a necessary and sufficient criterion for absolute continuity of
QOr with respect to Pr.
8. THEOREM. Suppose Q, < P, for all n > 0. Let T be a stopping time.
1) @r < Pr ifqnd only if {T= 0} ¢ {Z,< x0} Q-as.
(2) Then the Radon-Nikodym derivative dQr/dPy is Zy, where
Ze(w) = {?(zv) lf Tw)=n,
w@) I T(w) = .
Proof. Let A € #y. We then have

04) = Zo QAN {T = n))+0(4n {T = ).

Noticethat 4 n {T' = n} belongs to #, and Q(AN{T = 0}) = QMAN{T = w0}n
N {Z,; < ©}) by assumption, Consequently,
0
o= | zar+

n=0A4~{T=n}

Z,dP
An{T=w}n(Z,, <o)

icm
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and since P(Z, < o) = 1, we obtain
04) = § zrap.
A
Thus Qr < Pr and dQ/dPy = Zy.
Conversely, if Oy < Pr, then

QAN {Z, =@} =0
for all A € &, by Theorem 4. Setting 4 = {T = o}, we obtain
{T=w}c {Z,<x0} Qas
9. COROLLARY. Suppose that Q(T < ) = 1. Then Qr < Pr.
Let (X,)ss0 be a random sequence defined on (2, #) and taking values in
arbitrary measurable spaces (E,, &,). The following notation will be used. Let

FX be the smallest o-algebra with respect to which X, is measurable for all m < n.
In this case we always assume %, = %X for all n > 0 and & = FX.

10. Exampri. Let (X,),so0 be a sequence of independent random variables defined
on (2, #, P) such that P(X, = 1) = P(X, = 0) = 1. Suppose that there isa @, € 2
with X,(wo) = 1 for all n > 0. Define the probability measure Q as the d-distri-
bution of w,. Clearly, Q, < P, and Z, = dQ,/dP, = 2"*1- X, ... X,. Furthermore,
Zy = 0 P-a.s. But we have Z_ = oo Q-a.s. By Theorem 4 we get Q.1 P. We now
define
T(w) = min{n > 0: Z,(w) = 0},

where T'(w) = co if there is no such n. Then T is a stopping time and we have

QO(T = ) = 1. By Theorem 8, Qr is not absolutely continuous with respect to
P... Moreover, since P(T < o) = 1, we observe that Qr | Pr.

Independent random sequences

Let (X,),»0 be a random sequence defined on (2, #) and such that X, is taking
values in (E,, &,) for all n > 0. Assume that (X,),»o is independent with respect
to both Q and P.
11. THEOREM. If Q, < P, for alln > 0, then Q < P or Q 1 P.

Proof. Let Qy, and Py, be the distributions of X, in (E,, &,) with respect to Q
and P. Obviously, Q4 < Py} for all n > 0. We then have

Z, = go(Xo)* ...* gu(Xy) Q-a.s. and P-as.

for all n > 0, where g, = dQx,/dPy,. From Kolmogorov’s 0-1 law for independent
sequences we get Q(Z,, < o) =1 or 0. By Theorem 5, @ < PorQ1P.

If we assume Q, ~ P, for all n > 0, then by symmetry we obtain Kakutani’s
[3] equivalence-singularity dichotomy.
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Gaussian random functions

We now give a proof of the Feldman-Hajek dichotomy for Gaussian measures
that is essentially based on Theorem 5. In our opinion this proof is advantageous,
because it is not difficult and shows down clearly which basic properties of the
normal distribution are needed. The fundamental property for the validity of the
dichotomy is the fol]owing well-known fact: Let (&,),=0 be an arbitrary Gaussian

sequence. Then either Z 2 < 40 as. or Z § = +o0 as in dependence on

the convergence or divergence of ZES,?. In the sequel we shall use this property
n=0

without further comment.
Before we consider the Gaussian case we state an important lemma that will
be derived from our general Theorem 5.

LemMA. Let(®) o, = Z,2;% for n> 1 and ay = 1. Suppose, moreover, that
Q. ~ P, for all n 2 0. If for somep > 1

ZlnEp(a,ﬁﬁ,”ll.ﬁn) = —o P-as.

n=0
then we have Q 1 P.
Proof. It can easily be seen that
0 < Ep(a}?|l#)< 1 Qas.
and since Q, ~ P, this inequality also holds P-a.s. Define the random variables
Yop1 = 0“/”1[EP(%}Q’1|9’-’.)] Y, =

n
W,, = ].—_[Yk'
k=1

One immediately verifies that (W,, #,, P) forms a nonnegative martingale and,
consequently, the finite limit W,, = lim W, exists P-a.s. Notice that
n

and

n-1
zir=w,[] Exilli|#)  Pas.

k=0
" . . kil
In view of the assumption of the lemma we have [] Ep(afl?)|#4) = 0 P-a.s5. From

k=0
this immediately follows
P(Z,=0)=

By Corollary 6, we obtain Q | P, proving the lemma.

(*) We make the convention a=! = 0 if g = 0.
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Let now I be an arbitrary parameter set and (X;);.; a family of random vari-
ables defined on (2, #). Let F be generated by this family. Assume that (Xj)er
is Gaussian, i.e. for all iy, ..., i, € I the random vector (X3, ..., X3,) has (possibly,
degenerated) normal distributions, with respect to both probability measures O
and P. '

The Feldman-Hajek dichotomy asserts that either @ ~ P or @ 1 P. For proving
this dichotomy first we notice that, obviously, it suffices to consider the case I

= {0,1,2, ...} Furthermore, we can and do assume Q, ~ P, for all # > 0. Other-
wise we have Q, L P, for some n and thus @ | P. Let

ay = EQ(Xn[g;n—l)s Zﬁ = EQ[(Xn_an) [Fn-i]
for all n > 0 where &#_, = {&, 2}. The random variables b, and o2 have the
same meaning with respect to P. Note that in view of the theorem of normal corre-
lation (cf., forexample, [4], Theorem 13.1) a, and b, are linear functions of Xo, ..., Xpe 1
and A, as well as o, are nonnegative constants. Define D = {n > 0: 4, > 0} and
on = 0u/As for all neD. (Clearly, n e D if and only if o, > 0.) For the Radon—
Nikodym derivative one easily deduces the following formula:

*) dQn H o exp{ (Xk ak)z + 1 (Xe— bk)z}
keD

2 ot

In the next theorem we give necessary and sufficient conditions for absolute
continuity and singularity of @ and P in case of 7= {0, 1, 2, ...}. The conditions
are formulated in terms of a,, b,, 4,5 and @,. In particular, the dichotomy either
Q ~ P or QP is an immediate consequence of this theorem.

12. THEOREM. Let Q, ~ P, for all n > 0.

(1) @ ~ P if and only z'fZ((lng,,)2+EQ -(“72——)—1—) < +oo.

2
neD +0a

@) QLP if and only if Z((lng,.)’+EQ (‘L@f_) - +oo.

2 2
neD l" + 0

Proof. The proof consists of two parts:

Q) Z(Gng,,)zﬂ?Q (@, —b)* ) < +w=0Q <P

2 2
e A2+ o}

@) 3(tng+Eq L ) —+@=QLP.

In fact, by symmetry the inclusions then hold if we replace Eq by Ep, too.
The assertions (1) and (2) of the theorem then can easily be verified.
(i) From (*) we observe

1 (X,—a,)? 1 X,—b,)?
Inoe,,=1ng,,——7( Aﬁn) +~2~( l,z.)
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for all n& D and Ina, = O otherwise. Note that the sequence (X,~a,)/1, is inde-
pendent with mean zero and dispersion 1 with respect to Q. From this we obtain

l (a" ")2
29 —2— B o2

for all n e D. Notice that the convergence of Z (Ing,)? implies the absolute con-

Eylna, = Ing,~

vergence of Z(lng"— —;— @"e ) Furthermore, in view of limg, = 1 the series of
neD n

a,,—b,, 2 Ay n,
EQ L-T’-z——)—‘ and EQ (12+ 2

converge simultaneously. Consequently,

o
>’ Eylna, < +oo.

n=0
From this the assertion follows.(®)

(ii) Let us assume that @ and P are not singular. By the lemma proven above,
we obtain for p =2

ZIHEP(D‘ PFD > —
with positive probability with respect to P. An easy computation shows that for

neD

1 20 (an—bn)*
In Ep(ct/2 - n In = O,
n Ep(oz 21| F) 5 ln“gﬁ-&-l "—————4(12_{_0,5)

Because both terms are nonpositive we get

20, @ —b,)?
E %> 0 and P( %<+m)>o.
neD " "

But the convergence of the first series is equivalent to the convergence of Z (Ingn)*.
‘We now use that ((a,. ,.)/]/ A2+ a,,),,;o is Gaussian with respect to Q and P There-

fore
(an - bn)2

prie < +4+on Pas

neD
Since @ and P are not singular we get that

Q( M<+oo)>0.

21 52
neD At o

. . n
(®) This fact js well known: We have Z Eqlnoy = EqInZ, = EpZ,InZ,. Therefore,
k=0
SupErZainZy < +00 and the martingale (Z,, #,, P) is uniformly integrable. This yields Q < P.
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2= by)?
ZEQ (ZZ+ 2 < +o00.

neD

Consequently,

Thus (i) is established. This completes the proof of the theorem.

Non-homogeneous Markov chains

Let (Xi)u»o be a random sequence defined on (R, %, P) and taking values in
measurable spaces (E,, &,). We call (X,),s0 a Markov chain if there is a transition
probability P™ of (E,, &,) in (B, &4sy) (i€, a function (x, A) ~> P™(x, A)
for x € E, and A & &,,., which is &,-measurable in x and a probability measure
in A4) such that

P(Xoi1 € 41F%) = PO(X,, 4)  Pas.

for every 4 € £,,, and n > 0. A Markov chain (X,),so is called homogeneous if
(E,, &,) and P™ do not depend on n and, moreover, there is a translation operator
O satisfying the condition

¢)) X,(Ow) =X,.,(w) for nz0 and we.
We say that (X,),»0 is a 0-1 sequence if the asymptotical s-algebra (M) (X%,
n

> n) only consists of events of probability 0 or 1. Notice that (X,).»0 is a 0-1
sequence with respect to Pif (X,)ns0 is a 0-1 sequence with respect to a probability
measure P and P < P.

The following theorem is due to Lodkin [S]. We give a simpler proof of it.

13. TueoreM, Let (X,).»o be a Markov chain with respect to both Q and P and
suppose that (X,)uso is a 0-1 sequence with respect to Q. If @, < P, for all n > 0
then either Q < P or Q LP.

Proof. Let R™ be any transition probability of (E,, &,) in (Ey41, €nyy) such
that Q™ (x, ) < R™(x, *) and P™(x, -) € R™(x, -) for every xeE,. We can
take, for example, R™ = L(Q™+ P™). Define

_dP™(x, )
pn(xs y) - d_R"‘)(x, ) (y)
and
do"(x, 1)
gu(x, ) = ROz, Y (y)
for all x € E, and y € E,,,. Let fbe the Radon-Nikodym derivative of the initial
distributions of (X;)s»o With respect to Q and P. It can easily be verified that

9o(Xo, X1) * o * Gue1(XKpm1, Xo)
PoXo, X1)* oo a1 (X1, Xa)

@ Z, = 19"— = F(Xo)-

9 Banach

.
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Q-as. and P-as. for every n > 1. (For this we need no measurability assump-
tions of p, and g, in x). Obviously, the event {Z,, = co} belongs to the asymptotical
o-algebra. Since (X,),»o is a 0-1 sequence with respect to Q it follows Q(Z,,, = o)
= 0 or 1 and by Theorem $ either Q < P or Q | P.

Homogeneous Markov chains

In this section we present some interesting and, as far as we know, new results
on the dichotomy Q < P or Q1 P in the homogeneous Markov case.
Let (X;)x»0 be a homogeneous Markov chain with respect to both Q and P,
taking values in an arbitrary state space (E, &).
14. TueoreM. Let (X)n»o be stationary and ergodic with respect to Q. If Q,< P,
Sfor all n > 0, then either Q < P or Q 1 P. .
Proof. From (2) we see that for the Radon-Nikodym derivative Z, = dQ,/dP,

P (Xie> Xiy 1)

Q-as. and Pas. for all n>0. This yields that the event {Z, = oo}
= {limsupInZ, = o} is invariant with respect to the translation operator 6.
e

n—1
-1

InZ, = nf(Xe)+ Z 109K Xivr)
k=0

Since Q is ergodic we obtain Q(Z,, = c0) = 0 or 1. By Theorem 5, @ < P or
Q1P '

It should be noticed that in the stationary case every 0-1 sequence is ergodic.
The converse is not true and thus our assumption of ergodicity is weaker.

Tt is worth noting the following simple fact. Let P and P be two probability
measures ‘such that either P < P or P P. Let Q be a third probability measure
satisfying Q < P. Then the alternative Q < P or Q1 P holds. This allows us to
apply Theorem 14 to the non-stationary case.

We now weaken the assumption of Theorem 14 that Q is stationary and er-
godic. ’

15, THEOREM. Suppose that there exists a probability measure Q on & such that
the following two conditions are satisfied:

(03] Q is stationary and ergodic.

@e<0 ‘

If Q, < P, for all n > 0, then cither Q<PorQlP.

Proof. We know that the event {Z,, = co} is invariant and therefore 0(Z.,
= ) = 0 or 1. Consequently, Q(Z,, = o) = O or 1, proving the theorem because
of Theorem 5. ' c
16. COROLLARY. Let (X,),»0 be Markov with respect to Q, having the same transition

probability as Q, such that 0o < Qo. Suppose, moreover, that Q is stationary and
ergodic.
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If Q, < P, for all n > 0, then either Q<Por QLP.
Indeed, one easily verifies Q < Q

We close the paper with some applications to homogeneous Markov chains
in a discrete state space. : . :

17. THEOREM. Let E be countable. Let E, be a non-empty positive recurrent class
and assume Q(X, € E,) = 1.

If Qo < P, for all n > 0, then the alternative Q < P or 0 | P holds.

Proof. Let X(w) = (X,,(w))n;o for all w € 2 and denote the image probability
measures of @ and P on the space of all sequences of elements from E by Q¥ and
P, respectively. We then have @ < P if and only if @¥ < PX and Q| P if and
only if Q¥ ) PX. Therefore we can assume without loss of generality that Q
= Ei®12 -} and X,(w) = o) for all o 6 2 and n > 0.

Let 4 be the unique stationary initial distribution for the transition probability
Q(x, A) which is carried by E,. By ( we denote the unique probability measure
on # satisfying the property that (X;),., is Markov with respect to it, admitting
the transition probability Q(x, 4) and having initial distribution 4. The Markov
chain (X,), 50 then is stationary and ergodic with respect to @. Notice that w({xph >0
for all x € E,. Consequently, Qo <@o and the assertion of the theorem follows
from Corollary 16.

Without the assumption Q(X, € Eo) = 1 for some positive recurrent class
E, the statement of Theorem 17 does not remain valid. We give a simple example
for illustrating this situation. )
18. ExampLe. Let E= {1,2,...,2N} and define the transition probabilities

(i) fi<Nand j<N,
q = l,uz({j}) if i>Nand j> N,
0 otherwise,
m({jY) ifi<Nand j< N,
Py = [,us({j}) ifi>Nand j> N,
0 otherwise,
where p,, u;, and p, are probability measures on E such that u, is concentrated
on {1,..,N}, p, and p, are concentrated on {N-+1,...,2N}, us({j+N})
= u:({j}), and u, < ps. Of course, we aSsume u, % w;. For any initial distri-
bution u, let Q,, and P, be the probability measures on the space of all sequences of
elements from E constructed from g;; and p;; and u by the theorem of Ionescu
Tulcea. Obviously, @, = P,,. One easily verifies 0, I P, . Let now g = 1(us+u2)
and ¥ = 4(uy+ ;). We then have neither @, < P, nor @, 1 P,.

Finally, we consider one special case for which we always have the dichotomy
Q<Por Q1P .

19. TureoreM. Let E be countable and suppose that E = EyUE,, where E, is a non-
empty positive recurrent class and E, the set of transient states with respect to Q.
If Qn < P, for all n > 0, then the dichotomy “either Q < P or Q 1 P” holds.
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Proof. Let T be the first entry time in the set E,. Of course, Q(T < o) = 1,
Let 27 = {T < 0} and define a random sequence (¥,)»0 on 25 by

V(@) = Xryn(®).

By QY we denote the restriction of Q on #¥ (which is a c-algebra of subsets of
Qr). Set
P4
Y [ B )
P =37z
for all 4 € #¥. (Notice that in view of Corollary 9 we have P(T < o) > 0.) By
-the strong Markov property (¥,),»0 is Markov with respect to both Q¥ and P,
admitting the transition probabilities O(x, 4) and P(x, 4), respectively. Now we
observe QY(Y, € E;) = 1. In view of Corollary 9 we find QF < PY for all n 3> 0.
According to Theorem 17, Q¥ < P¥ or Q" | P*. Using Theorem 5, we get Q(Z%
= 0) =0 or 1, where Z} = dQ%/dP} and Z¥ = limsupZ}. From formula (2)

we derive
Zryw=Z(ZY*Zy on {T< x} P-as. and Qas.

Consequently, Q(Z,, = ) =0 or 1. Applying Theorem 5, the assertion now
follows.
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ON MARKOVIAN DECISION PROCESSES WITH UNBOUNDED
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1. Introduction

The concept of Markovian decision processes was first introduced by R. Bellman
in 1957.

With the important contributions of R. A. Howard, D. Blackwell and others
the mathematical foundations and the applications of this part of dynamic program-
ming developed rapidly. It is very interesting to note how special applied topics make
it necessary to extend the standard decision model. ]

If we consider e.g. queueing systems, it is natural to choose, for modelling,
a countable state space — the number of customers waiting to be served —and
an arbitrary action space. Furthermore, the queueing process carries rewards, where
the negative rewards sometimes have a component that increases without bound
with the state of the system.

When studying stochastic systems of this kind, it is not possible to apply directly
the model of Blackwell {1], which assumes a uniformly bounded reward. Thus,
we have two options: one is to transform the queueing model into a model of the
uniformly bounded case, cf. [12], the other is to weaken Blackwell’s assumption.
The papers given by Harrison [4], [5], Lippman [8], [9], van Nunen [14], [15] and
Wessels [16] about models whose state or action space is countable and which are
sufficient for treating queueing systems lead in this direction.

This paper aims at giving a further generalization of Blackwell’s model necessary
for inventory systems.

An essential property of some inventory models is that their state and action
space have the same structure.

Therefore, we consider Markovian decision processes with both state and
action space being uncountable and rewards unbounded.

In Section 2 we shall outline fundamental definitions and results of the standard
model (cf. [1]), which is to be modified in Section 3 and applied to an inventory
system in Section 4. An elaborate discussion of problems and results of this paper
may be found in [2], [3], [7] and [10].
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