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Proof. Let T be the first entry time in the set E,. Of course, Q(T < o) = 1,
Let 27 = {T < 0} and define a random sequence (¥,)»0 on 25 by

V(@) = Xryn(®).

By QY we denote the restriction of Q on #¥ (which is a c-algebra of subsets of
Qr). Set
P4
Y [ B )
P =37z
for all 4 € #¥. (Notice that in view of Corollary 9 we have P(T < o) > 0.) By
-the strong Markov property (¥,),»0 is Markov with respect to both Q¥ and P,
admitting the transition probabilities O(x, 4) and P(x, 4), respectively. Now we
observe QY(Y, € E;) = 1. In view of Corollary 9 we find QF < PY for all n 3> 0.
According to Theorem 17, Q¥ < P¥ or Q" | P*. Using Theorem 5, we get Q(Z%
= 0) =0 or 1, where Z} = dQ%/dP} and Z¥ = limsupZ}. From formula (2)

we derive
Zryw=Z(ZY*Zy on {T< x} P-as. and Qas.

Consequently, Q(Z,, = ) =0 or 1. Applying Theorem 5, the assertion now
follows.

References

[113. Feldman, Equivalence and Perpendicularity of Gaussian Pr , Pacific J. Math.
8 (1958), pp. 699-708.

[21'J. Hajek, On a Property of Normal Distributions of an Arbitrary Stochastic Process, Cze-
chosl. Math. J. 8 (1958), pp. 610-618.

[3]1 8. K akutani, On Equivalence of Infinite Product Measures, Ann. of Math. 49 (1948), pp. 214~
226.

[4IR.S. Lipcer and A.N. Shiryaev, Statistics of random processes, Nauka, Moscow
1974 (in Russian).

[51 A. A. Lodkin, Absolute continuity of measures corresponding to Markov processes with
discrete time parameter, Teorija Verojatn. i Primen. 16 (1971), pp 703-707 (in Russian),

Presentted to the semester
MATHEMATICAL STATISTICS
September 15-December 18, 1976

MATHEMATICAL STATISTICS
BANACH CENTER PUBLICATIONS, VOLUME 6
PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAW 1980

ON MARKOVIAN DECISION PROCESSES WITH UNBOUNDED
REWARDS

H.J. GIRLICH
University of Leipzig, Leipzig, G.D.R.

1. Introduction

The concept of Markovian decision processes was first introduced by R. Bellman
in 1957.

With the important contributions of R. A. Howard, D. Blackwell and others
the mathematical foundations and the applications of this part of dynamic program-
ming developed rapidly. It is very interesting to note how special applied topics make
it necessary to extend the standard decision model. ]

If we consider e.g. queueing systems, it is natural to choose, for modelling,
a countable state space — the number of customers waiting to be served —and
an arbitrary action space. Furthermore, the queueing process carries rewards, where
the negative rewards sometimes have a component that increases without bound
with the state of the system.

When studying stochastic systems of this kind, it is not possible to apply directly
the model of Blackwell {1], which assumes a uniformly bounded reward. Thus,
we have two options: one is to transform the queueing model into a model of the
uniformly bounded case, cf. [12], the other is to weaken Blackwell’s assumption.
The papers given by Harrison [4], [5], Lippman [8], [9], van Nunen [14], [15] and
Wessels [16] about models whose state or action space is countable and which are
sufficient for treating queueing systems lead in this direction.

This paper aims at giving a further generalization of Blackwell’s model necessary
for inventory systems.

An essential property of some inventory models is that their state and action
space have the same structure.

Therefore, we consider Markovian decision processes with both state and
action space being uncountable and rewards unbounded.

In Section 2 we shall outline fundamental definitions and results of the standard
model (cf. [1]), which is to be modified in Section 3 and applied to an inventory
system in Section 4. An elaborate discussion of problems and results of this paper
may be found in [2], [3], [7] and [10].
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2. The standard model

Markovian decision processes are characterized by three structures: a probabilistic,
_ a decision and a reward structure. These structures are specified by four objects:

— a non-empty Borel subset of a Euclidean space, the so-called state space X,

— a non-empty Borel subset of a Euclidean space, the so-called action space A,

— a transition probability g = ¢(+/-, @) from X into itself, depending on some

parameter a € 4, the so-called /law of motion,

— a real-valued Baire function r on X'x 4, the so-called reward (function).

We describe the evolution of a system defined by X, 4, ¢, and r roughly as
follows: After observing the current state x, we choose an action a, from. the set
A of possible actions and receive an immediate reward r(x,, @,), and the system
moves to a new state x,;, according to the distribution g(-/x,, a,).

Now, we need the notion of a decision rule to define a Markovian decision
process and a criterion of optimality to define a decision problem.

By a decision rule (or a plan) we mean a prescription for taking actions at each
point in time, based on the knowledge of the whole history of the process which
is described by A, := (x, a4y, ..., @s—1, X,) at the nth stage.

A plan m specifies for each & a probability distribution over 4: w(h,) =: z,.
A stationary plan is defined by a single Baire function f mapping X into 4: we then
write z = f®. If the system is in the state x,, we choose action a, := f(x,) € 4.

We take the infinite Cartesian product Q2 1= XX AXXxAX ... as a sample
space. With the usual Borel o-field & := ¢(X)®0(A)® ... we obtain the measur-
able space (2, #).

The application of any plan m generates a probability measure P* :=
0:migmagms ... and thus a stochastic process on (R, &, PX), the so-called
Markovian decision process (x,,a,), n = 1,2, ..., which is determined by = and
starts in the state x.

The Markovian decision process is linked with the discounted expected total
reward over the infinite future

o0
(]) 7),:()6) = Z ﬂ""Eﬁr(x,,, an)
n=l
with the discount factor g € (0, 1).

Without some assumptions concerning the reward function r or the law of

motion ¢ there is no guarantee that under an arbitrary plan v,(x) exists for all x € X.
Blackwell’s assumption:

(B1): sup - |r(x, @) € M < o0,
(x,a)eXx A .
ensures of course (in this case, called uniformly bounded) that, for each x e X, va(x)

is now bounded over all plans . The function v, With v, = o[n] is called the return
Sunction of .

iom®
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Our decision problem is to maximize the return function. But does there exist
an optimal plan with

vk >0, foralm?

In his famous paper [1] Blackwell gave an example showing that this is not always
so. However, he showed that

TueoreM 1. In the uniformly bounded case, for any probability distribution p
on X and any ¢ > O, there is a stationary plan m* such that, for every m,

® P({x: o) 2 vu(x)—e}) = 1.

A plan #* with property (2) is called (p, ¢)-optimal. We will carry over the
statement of Theorem 1 to the unbounded case.

3. A model with unbounded rewards
In this section we shall modify the standard model replacing (B1) by weaker assump-
tions on r but under a restriction on g¢.

(AO) There exists a real-valued function w on X with w > 1 which is q-integrable
and satisfies

sup | w(x)g(dx'x, ) < aw(x)
acd y

Jor all x € X and a real number « < 1/B.

r(x, a)
(A1 sup =y < M< 0.

Under these assumptions it may easily be shown that ,, exists for all » and the
components are finite but not uniformly bounded.

THEOREM 2, If (AO), (Al) hold, then, for any & > O and a probability distri-
butionp on X such that w is p-integrable, there is a (p, £)-optimal plan m. Furthermore,
if w is bounded p-almost everywhere, there is a stationary (p, €)-optimal plan f=.

An outline of the proof may be given as follow: The first part of the statement
is proved in an analogous way as in [1]. Using a selection theorem, we find for
such a = a plan =’ where each m, is degenerated, ie. 7, (s Sy(xn)) =1, and the
return of @' is only slightly smaller than that of . We have yet to show that under-
these so-called Markov plans &' = (fi, fz, --.), there is a stationary (p, £)-optimal

lan.
g This is possible by [1], where Banach’s fixed-point theorem is used. However,
our return is unbounded and belongs to a certain linear space which is not complete
under the metric induced by the normal supremum norm but complete with regard
to a weighted supremum norm.


GUEST


136 H.J. GIRLICH

We define B, to be the set of all real-valued Baire functions on X. With a func-
tion w satisfying (A0O) we introduce the norm

e

w(x)

{lul 1= sup
xeX
Now, we take the set
B:= {u: uehB,, [ju]] < o}
and the metric
d(u,v) 1= |ju—v||
and show that (B, d) is a Banach space.

Let T; be a mapping associated with a particular stationary plan f* given
by

® [T(3) 1= r(x, f)+ B {u(x)a(ax' jx, f())

X
and U, a mapping associated with a Markov plan o' = (fi, /5, ...) given by
@ Upou := sup Ty u,

where for f, holds r(*, /(")) €B; then T}, and U, are contracting mappings on
(B, d) with unique fixed points on B. The condition for our (p, &)-optimal #' is
fulfilled and we may conclude the proof as in [1].

As a by-product we obtain the useful

TaEOREM 3. Let (A0), (Al) be valid.

@) If = and [ are plans with v, € B and Tyv, > ©,, then
®) v 2 Tp0 2 0.

(i) A plan = is optimal if and only if its return v, € B satisfies the optimality
equation
© u=supT,u,

asAd

where T, := T, with f(x) = a for all xeX.

Proposition (i) extends Howard’s plan improvement and (i) Bellman’s cri-
terion of optimality.

4. An inventory model

The development of dynamic programming is closely connected with the development
of the inventory theory beginning in the early 1950°s with papers by Arrow, Harris,
Marschak and Dvoretzky, Kiefer, Wolfowitz. Of course, the study of inventory
processes as special cases of Markovian decision processes began only after its
foundations had been provided at the end of the 1960’s (cf. [6], [2))-

Before modelling we shall explain an inventory problem in-a heuristic manner.
We assume we have a facility for stocking several products. The stock levels are
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reduced by demand, which occurs with random size, and are reviewed periodic-
ally, with the manager having to decide each time whether additions to stock from
an exogenous source by ordering, or reductions by selling are to be made. An opti-
mum decision, in this discussion, is one which minimizes the sum of the cost associ-
ated with the inventory under the possibility that the facility offers.

Now, we consider a multi-product inventory model with periodic review.
We denote the stock level of the product number i by x. If m different products
are held, we have the state variable x := (x, ..., x™), x, is the state at the beginning
of the period number n, X’ := R™ is the state space. We take a := (aV, ..., a™)
as an action variable, where a®® is the stock level of the product number { immediately
after decision-making, 4’ := R™ is the action space. The demands in each period
are independent of previous periods and identically distributed random. variables
£, with a continuous probability density @ and &, := (£59, ..., &™), where each
&9 is non-negative with E(£{) = u®.

The law of motion ¢’ is then(*) given for every Borel set B = R™ by

Q gBx,a) = | p@dk.
. a—¢eB
We have costs of the following types:
I(a) — cost of stocking and shortage for being in stock position a for one period,
1 is a convex function on 4’ with I(@)+c-a — oo with a®® — F00;

K —a fixed cost per order or selling;
¢ (a—y) — linear ordering cost or selling reward

ci= (e, ..., ct™) with ®>0.

- e

Thus, we obtain the reward function )
8) rx,d) = — [l(a)+@(x, a)+c- (a—x)],

where A(x,a) = 0, if x = a, and 1 else.

The objective is to choose a reorder/selling-policy, which minimizes the
expected infinite horizon discounted costs. This is an admissible plan, which
maximizes the discounted expected total reward over infinite future.

An admissible plan is a plan with restricted action-alternatives. Let S, :=
(SW, ..., St describe the capacity of the facility and S := (S5, ---5 SE™) the
maximal selling set in any period.

When. the system is in the state x, we have only the possibility to choose an
action a from

©9) Ay = {a: x—S; < a < S}

Thus, a slight modification yields the unrestricted model:

(%) backlogging of unfilled demand.
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(1) X:i= {x: x€X, x< 8}, A:=]J4x

xeX
q(-/x, a) = ‘I/('/x, Sc) and r(x, a) = r’(.?C, Se)
ifacd\ 4y, g:=¢q' and r :=r"if ae 4, forall xeX.

This model has unbounded rewards. Blackwell’s assumption is not satisfied

by our r. If we take

w(x) 1= b—c-x forall xeX and b > 0,
then we have

(1 sup Sw(x’)q(dx’/x, a) = max(w(x)+c- S;, w(So)+ ¢ ).
aed y

Furthermore, from (8) we obtain

(12) sup r(x, a) € ¢* Ss.
acd

Now, we choose b large enough for (A0) and (Al) to hold with M = 1 and a real &
with & > 1 and «f < 1. '

Therefore, we may apply to our case the results of the last section.(?) In par-
ticular, we are able to show that a stationary (p, £)-optimal plan exists, However,
in our special case this assertion can be strengthened by

THEOREM 4. For the inventory model (7), (8), (9), (10), there is a region ¢ = X
and a point S € X'\ ¢ such that f® is an optimal plan, where

S L]
(13) A ﬂx)i*{x Jffo ;‘5;\6.

This statement is proved by Johnson [6] for S = 0 and a discrete distribution
of demand. Using Theorem 3, Kiienle [7] extends Johnson’s method for demand
having a continuous distribution. ‘

In practice, it is advisable to optimize in the class of (v, S)-plans with simple
tegions o, characterized by a few parameters (cf. [11], [3], [10]).
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