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Introduction

We say a sequence {&,} of random variables converges weakly to the random, vari-
able &, and we write &, = £ if & ,(x) - Z(x) at continuity points x of £ (x), where
Z,(x) and F(x) are the distribution functions of &, and £, respectively.

In this lecture the author summarized a part of his results about the weak con-
vergence of linear rank statistics, which can be found in his papers [1], [2], [3], [4],
and [5]. This paper contains these results.

In the first section the necessary definitions are given. In the second section
one can find the mean limit theorem for the characteristic function of linear rank
statistics, which is of fundamental importance for the whole theory of linear rank
statistics. Then there follow some limit theorems as consequences of this fundamental
theorem. The third section contains applications of the results of the second. Espec-
ially as a generalization of the well-known limit theorem of the Wilcoxon statistic,
we give necessary and sufficient conditions for simple linear rank statistics to have
a normal limit distribution. Then we give methods of constructing linear rank
statistics with a given asymptotic with the aid of the Riemann integrability criterion,
of mechanical quadrature, of Szegé’s result concerning the eigenvalues of Toeplitz
matrices, and of pseudo-random numbers.

The results obtained are suitable for constructing tests to decide whether two
random variables have a common continuous distribution function or not, provided
that at least one of the sample sizes is large.

1

Let {(¥;,..,x,)} = R, be the real vector space of dimension »= m+n,
where m > 0, n » 0 are integers. Denote by w, the set of the vectors of R, for
which at least two components are equal.

Let the components of the vector (xy, ..., %,) be pairwise different from one
another. If the rearrangement according to size z; < ... < z, of those numbers
gives x, = Zy,, then we say that x; has rank ry, tank x; = ry.
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Let
Op ey = {1, s B)ER| X;# 3, jHEK rankxe=n (k=1,...,m)},
()'1, s I',,,) EH,(,’,J),

where IT$? denotes the set of all r, < ... < r,, chosen without repetition from the
elements 1, ..., 7. ) ) '

Obviously, these sets and w, are mutually disjoint and their union is equal
to R,. o

Let the random vector variable Z, = (£y, ..., &) on the probability space
(@, o, P) be given. Let the joint distribution function of the components of ¢,
be continuous in each of the variables. Then P({, € wy) = 0. Let

(1-1) P(Cﬂ € wrl...r,,,) = pr,...r,,, H (rl EIRRRE l‘,,,) Eﬂ,(,:'),
where \

Prorg = 1.

(r;,._.,r,,,)elb(rr)

Let the probabilities (1.1) be given in the cases
(1.2) n=0,1,2,..

We denote the totality of these probabilities by 2.
Let the triangular matrices

Pryrn 2 0,

v=m+n, m=1,2,..;

afp
k
af

13

with real elements be given.
DepmNiTioN 1.1, By the linear rank statistic {A,, #} we mean the stochastic
process
Emn =52+ oo 5,
provided
PO = as oo, 00 = a) = Py,

P

(rl, wevy rm) er[t(v‘l')»
where the integers », m, and n are defined by (1.2).

DErNITION 1.2. We say that the linear rank statistic {dx, P} has asymptotic
distributions if for any integer m > 1 there exists a random variable &, such that
Epy => Epy m— 0.

DermtioN 1.3, We say that the linear rank statistic {d,, #} has a doubly
asymptotic distribution if there exists a random variable & such that &, , = £ if
n— o, then m - .

Clearly, a linear rank statistic having asymptotic &, (m=1,2,..) distribu~
tions is doubly asymptotically distributed if and only if &, = &

icm
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2

In the sequel we investigate only the special cases of the probabilities (1.1) suit-
able for getting an asymptotic theorem for the random variable Emne

v If A = (ay) is a square matrix of order n with complex elements, then the
permanent sum for 4, denoted by Perd, is defined as follows:

Perd = Ay o
(ioeniiy)
» 1,) Tuns over the full symmetric group.

4 anin’

where (i, ...
(a) Let the triangular stochastic matrix

P2y P2z
@0 F =1 i
Pt pvl oo Poy
be given, ie. let T
Dby =20, Zp,,1=1 (j=1,...,v;v=_l,2,.“).
Je=1 '

Denote by p, and jj, the maximum and the minimum of the elements p,, ..., p,,,

respectively. :
The matrix & is said to be a matrix of type R if im p, = 0, of Poisson type
. Y00
if limwp, = limsp, = 1, and symmetricif p,; = p,y_ju1 G =1, c.o,m39 = 1,2, ...
¥+ 00 V=00
If & is a stochastic matrix of the Poisson type, then it is also of type R, but not
conversely.
Let the stochastic matrices
Y
Y sy
(2.2) Fr=] v (k=1,2,..

JS U
be given. Denote by B,, the matrix (¥ = m+n)
B0 B
By = | v | = (B ... BM),
J LR M
where B®™ is obviously the rth column of matrix B,.
We introduce the following matrix operation:
 G(Bm)= Y. Per(B%.. B,
(k]....,k"y)eﬂf:)

Let the stochastic matrices (2.2) and matrices (1.3) be given.
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DEFINITION 2.1. By the linear rank statistic {Ay, &,} we mean the linear rank
statistic {4, 2} generated by

Per(Beo ... Btrm)

Prirn = “E(W’ (r.l’ “res rm) E[],(,,”),
provided
@3) im G(By) = 1,

where integers », m and n are defined by (1.2).

We can prove ([3], Theorem 1) that if the matrices & (k = 1,2, ...) are of
type R, then limit (2.3) exists.

DEFINITION 2.2. We say that the linear rank statistic (4, &) is a linear rank
statistic of type R, or of Poisson type, or symmetric if all elements of sequence {&:)
are stochastic matrices of type R, of Poisson type, or symmetric, respectively.

In the limit theory of linear rank statistics {4;, %} as we have defined them,
a role of fundamental importance is played by the following theorem ([3), The-
orem 3).

TeroREM 2.1. Let the linear rank statistic {4y, &y} be given. If Om, () denotes
the characteristic function of random variable Emns then uniformly at t € R,

i [~ 0 ]=0 =12
with (v = m+n)
PRQ) . ¢l
D)= rererenninn.

| P .. p(t)
where @()(t) is the characteristic function of the random variable which takes the
values a), ..., oS with probabilities p%®, ..., P, respectively.

By using the Continuity Theorem, of the sequences of characteristic functions
([6], Theorem 3.6.1), the following theorems are direct consequences of Theorem
2.1 ([3], Theorems 4 and 5). :

THEOREM 2.2. The linear rank statistic {4, Pr} has asymprotic distributions
if and only if there exists a limit of the sequence

)
n=0

1
2.9 {WPer(ﬁ,,(t)} » teR (m=1,2,.)
and this limit is continuous at the origin. In this case uniformly at t e R,
0y o(1) = ——lim®,(1)  (m = 1,2, ..),
novco m! g

THEOREM 2.3. The linear rank statistic {4v, 1} has a doubly a.s'ym‘ptotic distri-
bution if and only if sequence (2.4) has a limit as n — oo and then m — o, and this
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limit is continuous at the origin. In this case uniformly at t e R,

lim 97,,,',,(0 = lim —l—llm@,(l)
n-+c0 moc M i
m-» o0

(b) Let &y = & (k=1,2, ..), where & is a stochastic matrix of the form
(2.1). The corresponding linear rank statistic will be denoted by {4y, ¥} We can
prove ([3], Corollary 1) that {d,, &} is a linear rank statistic if and only if & is
a stochastic matrix of type R.

Since in this case matrix B,, consists of columnwise equal elements, the cor-
responding theorems of 2.1, 2.2, and 2.3 have a simpler form ([3], Theorems 6, 7, 8).

Let 7§ be the random variable which takes values ag, ..., af with probabilities
Dyis «ves Py Yespectively. From Theorem 2.2 we get the following result, very useful
in applications ([3], Theorem 9):

THEOREM 2.4, If for each matrix A, from the linear rank statistic {Ay, &} there
exists a random variable ny, such that 1’ = n,, n — co, then this linear rank statistic
has asymptotic i+ ... +n,, distributions (m = 1,2, ...) and the random variables
N1s> M2, «.. are independent.

In applications the special case & = &, plays an important role, where &,
is the so-called arithmetic mean matrix, i.e.

1

1 1

27 '
Fom=| e

1 1 1

R

It is easily seen that {4, %} is a linear rank statistic of Poisson type and sym-
metric,
The basis of the applicability of linear rank statistic {4y, %o} is the following.
If the joint distribution function of the identically distributed random variables
&1y .oy £, is symmetric for one of its variables, and is continuous in each of the
~1
variables, then ([7], 363, Satz 10) probabilities (1.1) are equal to (n ;m) . The con-

ditions listed will be satisfied if £, ..., &, are identically distributed, independent
random variables with continuous distribution function.

3

In this section we deal with applications of the theorems of Section 2. Especially
we give methods of constructing linear rank statistics with given asymptotic.

(2) First we give necessary and sufficient conditions for a simple linear rank
statistic to have a doubly asymptotic normal distribution.

10 Banach
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DEFINITION 3.1 We say that the linear rank statistic {4y, &} is a simple linear
rank statistic if 4y = azdo (k= 1,2,...), where o, # 0 is a real number and

TreOREM 3.1. Let {u,do, S} be a symmetric simple linear rank statistic of
Poisson type. Then

X
lim P (-5———~”’"—E(§ﬂl'5)~ < x) = ~——1;—:.- S e~ Yy

Vi

aH—~00 00

"m0
if and only if the sequence {ay} satisfies the condition
. ad+ ... +ad

3D ,,l,lﬁ, (34 ... +a2)?

Let 4y = Ay, $= &0 (k=1,2,...). Let {dy, ¥,} be the corresponding
linear rank statistic. {4o, &,} is the so-called ‘Wilcoxon statistic, which plays an
important role in the theory of rank tests. Obviously, the Wilcoxon statistic is a simple,
symmetric linear rank statistic of Poisson type and satisfies condition (3.1). There-
fore, on the basis of Theorem 3.1, we infer that the Wilcoxon statistic is doubly
asymptotically normally distributed.

=0.

(b) In what follows we construct a linear rank statistics with given asymptotic

distributions. They play an important role in the rank test theory. Namely, to use
such linear rank statistic in the rank tests theory, it is sufficient for only one of
the sample sizes to be large enough.

The decomposition of interval' [0, 1] into disjoint subintervals. realized by the
points of division

(3.2) O=x0<x;<..<x, @#=12.)

will be called a distinguished decomposition sequence if matrix (2.1), formed by the
numbers ‘

(33) Pyj = Xyg—Xpp—q (./ =1, y=1, 2, vn)s

is a stochastic matrix of ‘type R.

On the basis of Theorem 2.4 we have the following theorem, ([3], Theorem 14):

THEOREM 3.2. Let (3.2) be a distinguished decomposition sequence of the interval
[0, 1], and let & be the stochastic matrix of type R formed by the elements (3.3).
Denote by J an arbitrary p‘oint in the interval determined by the points x,;_, and
Xyje .
I {fi(®} is a Sequence of Riemann-integrable functions on the interval [0,1]
and the elements of matrix 4, are given by af¥) = JelT§), then the linear rank statistic
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{4, &} is asymptotically fi(n)+ ... + () (m=1,2,..) distributed, where
N1s> N2s .- are independent random variables uniformly distributed in the interval
[0, 1].

We obtain hence the following corollary.

CoroLLARY 3.1. [f 4, = 4 (k= 1, 2, ...) with

-1 -~
1
5 1

A=] «vviviin. s
L2
Y

then the linear rank statistic {A, &} is asymptotically n,+ ... Fm (m=1,2,..)
distributed, where v, ,9,, ... are independent random variables, uniformly distributed
in the interval [0, 1].

The corollary just formulated is the case of a modified Wilcoxon. statistic.
Since E(n;) = 1/2, D*(n,) = 1/12, N+ ...+, is asymptotically normally dis-
tributed with expectation m/2 and with variance m/12.

(c) Let us suppose that the density function p(x) of the random variable &
defined on the interval [z, 5] is positive outside a set of measure zero. Let {0}
be the sequence of orthogonal polynomials belonging to the density function p(x).
As is known, the roots x,;, ..., x,, of polynomial w,(x) fall into the interval [a, b]

and have multiplicity one. Let
b

@, (]
Ly(x) = ”@';ﬂﬁ‘ﬁr@;: Ci= §P(X) L(x)dx.

On the basis of Theorem 2.4 we can prove the following statement ([3], The-
orem 13).

THEOREM 3.3. Matrix (2.1) formed with the quantities p,; = C,; is a stochastic
matrix of type R. Moreover, if {fi(x)} is a sequence of functions defined and con-
tinuous in the interval [a, b), and the elements of matrix A, are given by A = Se(xp)s
then the linear rank statistic {4r, #} is asymptotically fi(E)+ ... +fu(lm) (m
= 1,2, ...) distributed, where £, &,, ... are independent random variables with a com-
mon density function p(x).

Similar results can be found in Chapter 4 of paper [3].

(d) We say that T,(f) = (p(k—1))1m0 is the Toeplitz matrix of order n+1
generated by the Lebesgue integrable function f(x) defined on interval [—7, ]
if

™
#0) =5 | ey, tenr,.

e
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On the basis of Theorem 2.4 we get the following theorems ([1], Theorems 2.2,
2.4). ‘

THEOREM 3.4. Let Ly, (k =1, ..., n) be the eigenvalues of the Toeplitz matrix
of order n generated by the Lebesgue integrable function f(x) defined in the interval
[—m,w]. Let F(x) (k=1,2,...) be a continuous function defined on the narrow-
est interval containing the range of f(x). If

aP=F() (G=1,.,vnk=1,2,.),

then the linear rank statistic {Ay, &} is asymptotically F.(f@,))+ ... +F w(Sm))
(m=1,2,...) distributed, where &, is the arithmetic mean matrix, and 7, Ny vee
are independent, uniformly distributed random variables in the interval [~, x)].

THEOREM 3.5. If the expectation of the random variable & exists, and if its dis-
tribution function F(x) is continuous, strictly monotonously increasing in some in-
terval [a, b], and F(a) = 0, F(b) = 1, where a = — 0, b = o0 are also permitted,
then the linear rank statistic defined in Theorem 3.4 with f(x) = F ~(x+ )/2m)
is asymptotically F,(fE))+ ... +Fn(fEw) m=1,2,..) distributed, where
§1, &, ... are independent random variables with a common distribution Sfunction
F(x).

More similar results can be found in Chapters 2 and 3 of paper [1].

(d) Finally we give a theorem ([2], Theorem 3) to construct a linear rank stat-
istics with a given asymptotic with the aid of pseudo-random numbers. More
about this topic can be found in papers [2] and [3].

The following theorem is founded wpon Theorem 2.4 and upon the well-known
theorem of H. Weyl.

THEOREM 3.6. If {fj(x)} is a sequence of Lebesgue-integrable functions defined
on the interval [0, 1), if moreover, x; € [0, 1), ;e [0, 1) is irrational and if

Xe = X1 H0— [ +0] (kK =1,2, ...; xo5 = x}),

then the linear rank statistic {Ay, %o} generated by the elements
a4y =filkiy—r)  G=1,..,%)

is asymptotically fi(n)+ ... +fuln) (m=1,2, <) distributed, where 7, 1, ...
are independent random. variables uniformly distributed on the interval [0, 1).
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