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1. Introduction

A sequential statistical procedure is characterized by the fact that the information
of the sampling process at a given time n influences further sampling. This may be
only the determination of the stopping point, but also the design of further obser-
vations (with fixed or random stopping), the determination of grouping intervals, etc.

In sequential sampling we deal with an on-line procedure of observations
and actions by the statistician. For this purpose it is necessary to have

simple statistical decision procedures (tables, schemes) for decision making
at every time point or ’

special numerical tools. )

In both these directions many efforts have been made recently.

In view of practice there are’

problems in which the sequential approach is necessary (for example, detection
of a change-point in the distribution of quality parameters of produced units, de-

cision ‘about replacement of a technological equipment),

problems in which sequential statistical methods may be preferable (for example,
in quality control of production), )

problems in which the sequential approach is not applicable (for example,
in certain biological trials). .

Mathematical criteria of preferability of some statistical method are the sampling
costs and the certainty of statistical decisions. These questions will be discussed

in another paper. In this paper some basic concepts on the foundations, of the

sequential statistical approach will be given, concerning the determination of stopping
rules, the selection of the observation structure and criteria of sufficiency in se-
quential statistical structures. '
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2. Observation scheme

Let (2, S, P) be a given statistical structure. 2 is the sample space, consisting
of points (x;, X5, ...), (x(¢), t € T) or others. (In the following we restrict ourselves
to the discrete case.) © is a o-field on £, pointed out by the statistician. P =
{P,,0 €0} denotes a parametric family of probability measures.

In the sequential case we fix on & a monotonic sequence of sub-o-fields:

{8,neN}, 6,6, 8,56, neN.

B = a{"@ls”}.

We connect with this sequence a time scale: At the point n we are able to observe
events on &,. (If a sequence of random varjables X, X,, ... is observed, then &,
may be the o-field on £, induced by X, X, ..., X,.)

3, Stopping time

Any stopping time 7z must be a random variable on (2, &, PB) with values in ¥,

(@) T =n for some neN and all » € 2. This leads to a sample with a fixed
sample size n.

® s an arbitrary random time, i.e. a random variable on (?, &, B) with
values in N = Nu {w}, without any relation to the sequence {&,,n € N}. Such
a time is not useful in practice, because the observation of {r = n} requires the
full observation of events from &.

(© = is @ Markov time in relation to the sequence {,,neN}.

DermvTioN. A function v(-) on £ with values in N is called a Markoy time
in relation to the sequence {€,,neN} if, for all neN, we have {r=n}eB,.
(S, is the o-field consisting of &, and all 4 €S with Py(4) = 0 for all § €6.)

Remark. This definition is a mild generalization of the known definition an.
The observation of events in &, leads with P-probability 1 to the realisation of
{r=n}or {v>n}

(d) = is a randomized time. First we will give an extremely simple characteriza-
tion of the randomized time, pointed out by R. Dshler [4].

DEFINITION. A random variable on (2, &, B) with values in ¥ is a randomized
time in relation to the sequence {&,,n e N} if the event {r = n} and the o-field
©., are conditionally independent under the condition &, ie. with Py-prob-
ability 1 we have

Po({r =n}ndy1©,) = P(v =n|S,) Pyd,|S,),
VneN, VA,c6,, V0cO.

° ©
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We can prove that this is identical to
Pyt =n|8,) = Py(t = n|&,).

This equation shows that a randomized time is characterized by the fact that the
conditional probability of {v = n} is fixed after the observation of &, and is not
changed by further observations.

Remarks 1. The given definition is identical to that given by D. Siegmund
(see. [8]). But D. Siegmund uses an auxiliary sequence of o-fields.

2. The Markov time is a special randomized time. For a Markov time v we
have

Pv=n|8)=Pr=n|G) = L=y = Pyt = n|B,)

because of {r=n}e&,, {r =n}eG,.

3. Another relation to the Markoy time can be obtained in the following way.

DEFINITION, Let 7 be an arbitrary random time on (2, ©, ). 4 € S is called
a Markovian event for v in relation to {&,,neN} if

{tr=n}ndeB,, VneN.
We can obtain the following statements:

(1) The random time v is a Markov time iff Q is a Markovian event. The class
M of all Markovian events in this case is a o-field.

(2) The random time v is a Markov time iff & = ©,, where
8, = o{8,n {r = n}, neN}.
(3) The random time = is a Markov time in relation to {&,, n e N} iff for all
neN and 0 €O
Py(v=n| o{&n{r=n}, neN})e{0,1}, Prae.

4. All interesting properties of a randomized time (such as the martingal pro-
perties for randomized stopped martingals, etc.) can be proved by using only the
definition property. But we shall return to the statistical aspects.

4, Stopping rules (in the sense of R. Bahadur)

In the practical use of a randomized time the conditional probabilities Pe(z = 1 | ©,)
for all neN must be given. This can be performed in a constructive way by
using stopping rules in the sense of R. Bahadur.

DEFINITION. A sequence of random variables {G,, n € N} on (2, &, ) is called
a Stopping rule g if

Mmo<saG, <1,

(2) G\(+) is &,-measurable, n e N.

' (In the paper of R. Bahadur [1] the G, are Borelian functions on Xj, Xz, ..., Xy.)
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By using the stopping rule g, we can realize an auxiliary random variable Z,;
1 with probability 1—g, — continuation,
Z = {0 with probability g, — stopping.

Remark. A. stopping rule g fixes a randomized time 7. For this = the conditional
probabilities Py(t = n|&,) are independent of . (But the absolute probabilities
Py(z = n) depend on 0. This is one of the reasons for studying randomized times:
to realize T with a prescribed function Py(v = n) of 0:or E,7.)

DEFINITION. A randomized time v is called parameter-free if for the conditional
probabilities Py(z = n | &,) exist variants independent of 0. We use the notation
P(r=n|G,.)

THEOREM. Any parametr-free randomized time v can be realized by a stopping
rule g.

Proof. The proof is based on

0 for w with P(T) n|&,) =0,
Giw) =) P(r=n|6,)
Przn|€,)
We can choose such variants of the conditional probabllltlcs that {G,, n e N} will
be a stopping rule.

otherwise .

5. Sample space

Given the basic statistical structure, the sequence {84, n e N} and the randomized
~time 7 in relation to {&,). The time 7 restricts the o-field of observable events,

For example, instead of X, X;, ... we observe only X;, X;, ..., X,. What, in these
cases, is the o-field of observable events for a given 77

v a Markov time. Let
=[4e@: {z2n}nde®,, Vn en};

€} is a o-field. And conversely, if & is a o-field, then v is a Markov time.

The o-field &} is called the observable o-field to 7. It contains especially the
events {z = n}, {v > n}.

 any randomized time. The o-field of observable events must contain all events
of the form {v > n}n4,, 4,e8,, ie. if we observe upto time n, we observe all
events as the minimum up to n.

DermviTION. Let © be a randomized time. The o-field
8, =o{d,n{v =1}, 4,¢6,, neN}
is called the o-field of observable events Jor the time © and the sequence {@,., n GN}
COROLLARIES. (i) We have

G = d{A,.r\{r =n}, 4,€6,, ne]ﬂ-
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Any event A, €@, has the representation A, = U (Aan{z =n}) with certain
neN
4,€6,.
(i) v is ©,-measurable. Any ©.-measurable random variable Y has the rep-

resentation Y = Z K {e=ny ¥y With @ measurable functions ¥,.
neN

DEFINITION. Let 7 be a randomlzed time in relatlon to {@,,, neN}and ©, the
o-field of observable events. Then

©Q,8,%P)
is called a sequential statistical structure. Here P, is the family {P,,, 6 € @} of
measures restricted from measures Py e P on © to &,.
Remark. The restriction P, from the P, can be obtained by using an extension
of the space £ by the results of the auxiliary experiments. We set up
=0QxZ,
Z  the set of all sequences of 0 and 1,
3  ofield on Z 1nduced by the subsets {Z, =i}, i=0,1;

=6®3,
Q® measure on 3 given by
Qm(z'" = 0) = G,,((/J), Qm(zn = 1) = 1-—G,,(w),

o(N{z =ih=1lo@ =i, =01
PY(4x B) :=§Q°’(B)dP,,, 4eB, Be 3,

can be extended to a measure P{ on &°.
Thus we have the extended basic statistical structure (2°, €°, °), P° = {P7,
0 € ©). The sequence {S,, n e N} is also changed by setting &2 := ©,xZ, neN.
We define .a new random variable 7° on (Q2°, ©°, P3°) by
o min[n: z, = 0],
@ 21522, ) = {oo if zy=1, neN.

70 is a randomized time on (29, €°, P°) in relation to the sequence {&F, n eN}.
(R2°, €%, P2) is the extended sequential statistical structure. For the restrictions
of the measures P{ to PP, we have

n~1 .
PRo(dfn {° =n}) = { Gnna—a,)dm, 4,€6,,
An
Po(d%n {70 = 0}) = § H(I—G,)dPo, A, €Gy.
Ao J=1

For any set 4% € @Y% we get the measure Ppro(Ap), using the representation

A% = U N {x°=n}), 42 =4,xZ, 4,€6,.
neN
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6. Sufficiency

The concept of sufficiency is of principal importance in concrete decision problems.
Let (4, @) be a decision space in which d € 4 are the decisions and 9 is a o-field
on 4. Under a decision rule S(-,-) we understand a transition probability on £ x D,
i.e. S(w, *) is for all w € 2 a probability measure on 2 and S(-, D) is a &-measur-
able function on £. To emphasize this we use the notation S€(w, D).
For comparison of decision rules the following definition is suitable.

DEFRINITION. (a) 4D, S) := S S(w, D)dP, is called the “image” of the de-
Q

cision rule S (J.-R. Barra [3]).
(b) The decision rules S; and S, are equivalent if

2D, 81) = 3(D,S;), VDed, V0eb,

(By equivalent decision rules the sets D € & get in the mean the same probabilities.)

The following question arises. Given a statistical structure (2, &, P). When
is it admissible to replace a decision rule S(-,-) based on & by a decision rule
S%(+,-) based on a o-field T with T < &? The following theorem is well-known
(-

THEOREM. Let (2, &, ) be a statistical structure and let T, T < &, be a suffic-
ient sub-o-field for (&, PB). Let S€(+, ) be a decision rule based on &. If, for all D € 9,
there exists a variant

E(S%(w, D) | X) := S%(w, D)

being a probability measure on (4, 9) for all w €, then the decision rule ST is
equivalent to the rule SS.

Remark. The last condition is satisfied, for example, if 4 is 2 Euclidean space
and 9 is the o-field of Borel sets or if 4 is a complete separable metric space, 9
the o-field of Borel sets and the structure (22, &, P) is dominated.

The theorem is also true in the sequential case if we replace the statistical struc-
ture by (2, ©,, P.) and study the o-field T < &,. But here the following question
arises: Given a sequence {%,, n e N} of sub-o-fields in & with

T, 6, nehl,
%, sufficient (minimal-sufficient) for (&, , PSx).
({%,, ne N} is called a sufficient sequence of o-fields, it needs not to be a monotonic
sequence.)
Does it follow from. this that T, is a sufficient (minimal-sufficient) o-field
for (&, PB.)? We have the following assertions [5]:
D) I {%,, ne N} is a sufficient sequence of o-fields and v is a parameter-free
randomized time, then X, is sufficient for (&,, B,).

(2) From the minima] sufficiency of {Z,, n e N} the minimal-sufficiency of %
does not follow in general.

e ©
lm SEQUENTIAL STATISTICAL STRUCTURES 157

Further investigations may be carried out for the case of (2, ©, ) being a finite
or infinite product space.

PROBLEM. Let © be a parameter-free randomized time associated with the stopping
rule g in relation to the sequence {&,, n e N}, g = {G,(w), neN). Let (T,, n eN}
be a sufficient sequence for {©,, n e N}. Is it admissible to replace the stopping rule g
by a rule g* = {GS(w), n €N} in which the G* are only T,-measurable and the
sequential statistical structure will be the same? The answer is positive if the sequence
{Z,, n e N} is transitive.

DerINITION. The sequence of sub-o-fields {Z,, n € N} for {G,, n e N} is tran-
sitive if for all 0 € ®:

) T, =6, nen,

(2) ¥,4+1 and &, are conditionally independent under the condition I,,,

(3) T, and &, are conditionally independent under the condition I,.

Remark. For a sequence of random variables X, X, ... the sequence of stat-
istics {T,(Xy, X3, ..., X,), neN} is transitive if Ty, ; = f(Ty, Xurr), neN. In
this case the sequence of induced by {T,, n eﬁ} o-fields is transitive.

TuEoREM [4]. Let {T,, neN} be a sufficient sequence for {&,, n e N}. For
a given stopping rule g let

0 i E.(j[lna—Gmxn)=o,
GHw) = {?.(anl;I”(l—Gj)!%..)
‘ E([1(1-6) 1)

If and only if the sequence {T,, n €N} is transitive, the stopping rules g and g*
= {G¥(w), ne N} are equivalent in the sense that they induce the same measures
on the o-field TL.

Remark. Even in the case of Markov time v for which G,(w) € {0, 1}, neN
we have Gi(w) € [0, 1], i.e. g* determines a randomized time. Thus the randomized
times are inevitable for the formulation of the theorem. The simplification of the
stopping rule by the sufficiency approach leads to the necessity of randomization.

otherwise.
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Introduction

In many applications the statistical analysis is characterized by the fact that a number
of detail questions should be answered and an overall view should be created by
the totality of answers to the detail questions. Here are some examples of such
situations:

A. The distribution of a random variable depends on a number of background
variables, For each background variable the detail question is if the distribution
of the random variable is influenced by this background variable. And the totality
of the answer to these questions creates a picture of the dependence on the back-
ground variables. This kind of problems appears in many contexts.

B. In a comparison of some multidimensional random variable for two cases
(e.g. treated and non-treated patients in a medical investigation) we may be
interested in differences in the different components of the variable. These are the
detail questions. But we are also probably interested in the differences in general,
ie. the totality of differences in all the components.

C. In an analysis of a stationary time series we may be interested in detail
questions concerning the correlation at different time distances. But we may also
be interested in getting a general picture of the dependence.

More examples of the same kind from different fields of applications are easily
found. The examples are illustrations of multiple statistical inference problems where
we have to take into consideration that we both want to answer detail questions
and get a general view by the totality of answers to the detail questions. To make
a test with conventional level of significance for each detail question is not good
from an overall point of view. If we, for instance, make 40 independent tests of
different detail hypotheses with level 0.05, we have a probability of only 0.954° ~ 0.13
that all hypotheses would be accepted if they were true. And there would be diffi-
culties in getting a general view of the investigation if just a few hypotheses were
rejected. The aim of these notes is to study the problem of constructing tests in such
a way that their totality will give a general view in a reasonable way.
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