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Introduction

In many applications the statistical analysis is characterized by the fact that a number
of detail questions should be answered and an overall view should be created by
the totality of answers to the detail questions. Here are some examples of such
situations:

A. The distribution of a random variable depends on a number of background
variables, For each background variable the detail question is if the distribution
of the random variable is influenced by this background variable. And the totality
of the answer to these questions creates a picture of the dependence on the back-
ground variables. This kind of problems appears in many contexts.

B. In a comparison of some multidimensional random variable for two cases
(e.g. treated and non-treated patients in a medical investigation) we may be
interested in differences in the different components of the variable. These are the
detail questions. But we are also probably interested in the differences in general,
ie. the totality of differences in all the components.

C. In an analysis of a stationary time series we may be interested in detail
questions concerning the correlation at different time distances. But we may also
be interested in getting a general picture of the dependence.

More examples of the same kind from different fields of applications are easily
found. The examples are illustrations of multiple statistical inference problems where
we have to take into consideration that we both want to answer detail questions
and get a general view by the totality of answers to the detail questions. To make
a test with conventional level of significance for each detail question is not good
from an overall point of view. If we, for instance, make 40 independent tests of
different detail hypotheses with level 0.05, we have a probability of only 0.954° ~ 0.13
that all hypotheses would be accepted if they were true. And there would be diffi-
culties in getting a general view of the investigation if just a few hypotheses were
rejected. The aim of these notes is to study the problem of constructing tests in such
a way that their totality will give a general view in a reasonable way.
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2. Some notation

Let the interesting detail hypotheses be H, H,, ..., H, and let Y1, Y,, .., 7,
be good test statistics for testing these hypotheses. We suppose for the sake of
simplicity that the test statistics are constructed in such a way that they have a tend-
ency of getting higher values when the hypotheses are not true. This means that
the separate hypotheses should be rejected when large values of the test statistics
occur. Further, let F,(x), F2(x), ..., Fo(x) be the cumulative distribution func-
tions of the test statistics, From a general philosophical point of view it is desirable
that the distribution of a test statistics of a true hypothesesis is not affected by other
hypotheses being true or false. This means that the test statistic in some sense mea-
sures deviations from its own hypothesis only. In practical applications it is often
not possible to get such an experimental planning and one has to accept an in-
fluence from other hypotheses. But of course it is important that the influence is
not to big, i.e. that the distribution of a test statistic of a true hypothesis is ap-
proximatel’y independent of the other hypotheses being true or false. We denote
by Fio(x) the infimum of Fy(x) over all distributions such that the hypothesis Hj
is true. This means that if we want to make a separate test of the hypothesis H)
at the level « we would reject the hypothesis if ¥, > Fi;5(1 — o). For the discussions
we are going to make later it will be convenient to have a notation of the obtained
level of the test statistics for the different hypotheses. For' this reason we introduce
Ry =1-F o) for k=1,2,..,n

3. Philosophical considerations and definitions

The philosophy of using a prescribed low level of significance in a test of a single
hypothesis may be described as follows:

Let H be a hypothesis which we want to reject. By using a low level of signifi-
cance () we give a latent opponent believing in the hypothesis a big probability
(1—a) of getting the hypothesis accepted if he is right. And we give ourselves only

a small probability (x) of getting the hypothesis rejected by chance, It is then our V

task to plan the experiment well and make enough of experiments to be able to
teject the hypothesis if it is not true. Only rejection leads to a real discovery and
acceptance only means that either the hypothesis is true or the hypothesis is false
but we have not succeded in discovering this fact in our investigation.

In a multiple test problem, where we have several hypotheses, we have to con-
sider the possibility that a latent opponent is of the opinion that a number of the
hypotheses are true, and we must give him a great probability of getting all those
hypotheses accepted. We could not defend ourselves against this latent opponent
if we had constructed a statistical method not giving him a good chance to get
‘his hypotheses’ accepted if they were true. And our ‘discoveries’ in form of re-
jected hypotheses would not be well established unless this condition is satisfied.
This leads us to the following definition.
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DeFNITION 1. A multiple test procedure for test of the hypotheses Hy, Ha, ...
..., Hy, ending up with acceptance or rejection of each separate hypothesis, is said
to have the multiple level of significance o for free combination if the probability
of accepting all true hypotheses is at least 1—¢ independent of how many and
which the true hypotheses are. m

The words ‘for free combination’ are put into the definition in order to indicate
that we have to ‘protect ourselves’ against a latent opponent regarding any combina-
tion of hypotheses being true. At some rare instants there may be a natural order-
ing of the hypotheses so that if a hypothesis is true the following hypotheses‘in the
order are also true. Numbering the hypotheses in this order, we have to take into
consideration only subsets of true hypotheses of the type {Hy, Heyys . Hy} and
we are led to the following definition.

DEFINITION 2. A multiple test procedure for test of the hypotheses Hy, H, ...
..., H,, ending up with acceptance or rejection of each separate hypothesis, is said
to have the multiple level of significance a for ordered combination if the probability
of accepting all true hypotheses is at least 1—a for any set of true hypotheses of
the type {Hy, Hyyy, ..., H,}. m

4. General multiple test procedures with prescribed levels

In the previous, section we have given two different definitions of multiple level
of significance for two different types of allowed combinations of hypotheses. Let
us first study the simplest case where we allow only ordered combinations. We
define a simple and general sequential procedure which is easily shown to have
the multiple level of significance « for ordered combination in the following way:

We first make any level « test of the hypothesis that all detail hypotheses
Hy, H,, ..., H, are true. If this test leads to acceptance we accept all hypotheses.
If it leads to rejection we continue to the second step. In the second step we make
any level « test of the hypothesis that all the detail hypotheses H,, Hs, ..., H,
are true. If this test leads to acceptance we reject H, and accept H,, ..., H,. If
it leads to rejection we continue to the third step. In the third step we make any test
of the hypothesis that all the detail hypotheses Hs, Hy, ..., H, are true and so on.

Now if we have a set of true detail hypotheses of the type Hy, Hii1s+.er Hpy
there is a probability of at least 1—a to accept all these detail hypotheses, since
either we make a level o test on this combination or we stop at an earlier step where
they are accepted (together with other detail hypotheses). Thus we have the fol-
lowing theorem.

THEOREM 1. The above-described sequential test procedure has a multiple level
of significance o for ordered combination. m

Note that we are allowed to meke the different tests of the hypotheses that
Hy, ..., H, are all true in any way we want. We can use for instance a quadratic
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form in Y, ..., ¥, or the maximum of ¥y, ..., ¥, or the minimum of Ry, ..., R,
as a test statistic. In the last case we easily get 2 level« test by using the Boole inequal-
ity which is of the form that we accept when min(Ry, ..., R,) = a/(n—k+1).
The same type of test occurs in the steps in a general sequential test procedure
with multiple test level o for free combination, which we are now going to introduce,
In order to make a simple description of the procedure we use the notation
R®, R®, ., R™ for the ordered obtained levels and the notation iy, i,, ..., 1%,
for the indexes of the hypotheses where those ordered obtained levels occur, This
means for instance that R(® is the second smallest obtained level and i, the index
of the hypothesis where it occurs. Now the general sequential procedure is most
conveniently described by the following figure.

RO > afn -+ Accept H , Hi,, ..., Fy

"

or
R < afn
i
R® 3z o/(n+ 1) _’{ Accept Hy,, Hy,, ..., Hi,
or Reject Hi,

R® < af(n—1)

i
R™ > of(n—2) N AC.Cept Hy, Hy,, ..., H,
or | Reject Hi,, H,

R® < of(n—2)

1
i
Accept H,"
()

V2w | Relect H,, Hi,, .., H,
or
R™ < «

{

Reject Hi,, Hy,, ..., Hy,

The total multiple procedure is easily carried through because it is completely
determined by the obtained levels and their relations to some simple constants.
For its multiple level of significance we have the following theorem.

THEOREM 2. The multiple test defined by the above figure has the multiple level
of significance o for free combination. w

The proof consists of three steps. Let I denote the set of indexes of the true
hypotheses and let N(I) denote the number of elements in I. First the Boole in-
equality is used to prove that P(R, > a/N(/)for all i I) > 1—q. Then it is shown
that the occurrence of this event implies stop at step N+1—N(I) or earlier in the
procedure. And finally it is shown that this implies acceptance of all hypotheses
with indexes belonging to 1.
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An even simpler multiple test procedure having a miltiple test level o for free
combination could of course be constructed by making comparisons of all R;’s
with a/n, reject the hypotheses with obtained levels under « /n and accept the others.
This is however a very conservative procedure and it is easily seen that the suggested
sequential procedure always has a higher power, i.e. a higher probability of reject-
ing false hypotheses. With one exception (the first step) the obtained levels are
compared with greater numbers in the sequential procedure than in the simple
non-sequential procedure.

Examining the sequential procedure we find that each test in the procedure
is performed with help of the smallest of the ‘remaining’ obtained levels. This is
not a common way of constructing a test of the hypothesis that all detail hypotheses
in a set are true. Using quadratic forms of the involved test statistics is probably
much more common. But for the type of alternative we have here the use of smallest
obtained level seems to have advantage. We should observe that in each step in the
sequential procedure we want to reject one hypothesis that has not been rejected
before. In order to see that such an aim could lead to a method based on smallest
obtained level rather than a quadratic form we study a very simplified problem.

Suppose that Uy, U,, ..., U, are independent and that Uy is normally distri-
buted with expectation w; and variance 1. We want to test the hypothesis that
My = f3 = ... = ty = 0 against the alternative that any one of the u:s is differ-
ent from 0 while the other are equal to 0. A. simple calculation now shows that the
likelihood ratio test should be based on the Uy with the maximal modulus, i.e. on
the minimal obtained level.

We_have not yet been able to show any optimal properties of the procedure
and there are even great difficulties in formulating optimal properties of multiple
test procedures. Since the method is very general, we should not be surprised to
discover that it is possible to make a better procedure for a more specified situation.
In the next section we will present two special procedures, which are better than
the general procedure in the special cases for which they are constructed.

5. Special multiple test procedures with prescribed levels

The first of the special cases we are going to study is the one where all the test stat-
istics ¥y, Y5, ..., ¥, are independent. In that case we could change the constants
a/n, af/(n—1),...,a in the general procedure to the slightly greater constants
I=(1—a)*/", 1~ (1= /=1, 1= (1—a)/?, 1~ (1—a)* and still get the multiple
test level of significance «. The proof of this follows the line in the general case but
instead of using the Boole inequality in the first step. we can now use the independence
and make an exact calculation. Since the obtained levels are compared to greater
constants in the special method than in the general method, the special method
will have a greater power. We summarize in the following theorem.
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THEOREM 3. If the random variables Yy, Y,, ..., Y, are independent the above-
described multiple test procedure has the multiple test level of significance a for free
combination and it gives a higher power than the general procedure with the same
multiple test level of significance. &

Our second special case is the analysis of variance situation. In this situation
the test statistics for detail hypotheses are either -statistics or F-statistics with
a common variable appearing in the denominator. The appearing F-statistics could
be regarded as quadratic form compositions of more primary #-statistics which
could be thought of as test statistics for more detailed hypotheses. For the sake
of simplicity we consider here only the case where all detail hypotheses are tested
by use of t-statistics. This means that we test the hypotheses Hy, H,, ..., H, by
use of #-statistics

Y, = Y, = lgjl, vy Yy = [gjl
where Uy, Us,, ..., U, and W are independent, U, is normally distributed with
parameters o, and 1 while W has the same distribution as the square root of a -
distributed random variable divided by its degree of freedom. The different detail
hypotheses H,, H,; ..., H, to be tested are that the different p,’s are equal to 0,
The procedure we suggest is in fact quite similar to the previous two procedures,
but since we are defining the procedure by the test statistics ¥ themselves and not
the obtained levels, it seems to be different from the previous ones. Let Y&, ¥, .,
..r» Y be the ordered random variables from the series ¥, ¥, ..., ¥yand iy, fy—y, ...
..., Iy the indexes of the hypotheses where statistics occur. Then the sequential
procedure can easily be described by the following figure.

Y™ g B, — Accept Hy,, Hy, ..., H,

n

or .
Y () > ﬁn
4
Yo-b o By J Acflﬂpt H,, Hyg, .., H,
YU g, lRCJeCt Hy, .
i
Y- g By [ { Accept H,,, Hy,, ..., Hy,
or Reject H, , Hi,

Yo-n > 6,

Yo < By { Ac?ept H,
or Reject Hy,, Hy,, ..., H_,
Yw > g,

1

Reject Hi,, Hi,, ..., H,
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The constants fy for k= 1,2,...,n are determined by the distribution of
the studentized maximum. modulus in a sample of independent observations from
a normal distribution. This distribution has two parameters, the number of degrees
of freedom in the denominator and the number of variables in the maximization.
The constant f, equals the 1—« fractile in the distribution with the second par-
ameter equal to & while the first parameter is equal to the number of degrees of freedom
in the denominators of the ¥’s. Tables of §, are found in Pillai and Ramachan-
dran [3]

The suggested procedure can be shown to have a multiple test level of signifi-
cance « for free combination and to have a higher power than the general procedure
along the lines of the previous case although the proof is technically more complicated.
It is also possible to reformulate the procedure in terms of obtained levels, but
then there appear constants in the scheme which are determined as the value of the
inverse of a c.d.f. of a t-distribution in a 1~ « fractile point of a studentized maximurm
modulus distribution. We again summarize in a theorem.

THEOREM 4. Suppose we have the analysis of variance situation with normal
basic distributions. Then the above-described multiple test procedure has the multiple
test level of significance « for free combination and it gives higher power than the
general procedure with the same multiple test level of significance. m

The two procedures we have suggested in this section are sequentially rejective
procedures which could be thought of as improvements of two well-known older
procedures. In the case of independence a simple old procedure consists of testing
all hypothesis at the level 1— (1—a)!/" and our method is an improvement of this.
In the analysis of variance situation an old procedure called the studentized maximum
modulus procedure consists of comparing all z-statistics with the number g, and
our sequentially rejective procedure is an improvement of this.

It is also possible to make analogous improvements of the so-called many-one-
t-procedure and many-one-rank-procedure. The older methods and their properties
are extensively treated in Miller [4].

6. Some examples

EXAMPLE 1. Decomposition of a two-sided test. It is quite common in applica-
tions to make two-sided tests of simple hypotheses and in case of rejection it is not
only stated that the hypothesis is not true but also on which ‘side of the hypothesis’
the real case is thought to be situated. In a medical investigation it may, for instance,
be tested if two drugs have the same effect on a disease and in case of rejection
it is also stated which drug has the preatest effect. Such a hypothesis testing pro-
cedure may formally be looked upon as a multiple test procedure with two detail
tests of the same hypotheses (equal effects) and with test statistics differing in sign
only. The first step in the sequential procedure is then to check the smallest obtained
level with «/2, and we get a procedure which is exactly the two sided test with equal
tails supplemented with a statement of type of deviation in case of rejection.
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EXAMPLE 2. Multiple testsina 3% 3 table. This example of application in medi-
cine is taken from Armitage [1], p. 213, and arises from Medical Research Council.

Patients suffering from pulmonary tuberculosis are treated with PAS (99
patients), Streptomycin (84 patients) or a combination of both drugs (90 patients).
The sputa from the patients are tested for degree of positivity and the following
results are obtained.

N\\-\ Sputum | pocitive Negative smear Negative smear
Treatment \\\ smear 1 positive cultm;é 1 ncgm,i‘,/(_:ju“ufcu
PAS 56 30 13
Streptomycin 46 18 20
Streptomycin and PAS 37 18 ) 35

In this example it is interesting to make pairwise comparisons between treat-
ments. The interesting division of the reactions ought to be positive contra negative
smear and any positive reaction (positive smear or negative smear and positive
culture) contra negative reaction. In all combinations it is motivated to make one-
sided tests in both directions ‘as in Example 1 and thus we get 3x2x2 = 12 detail
tests whose results constitute the totality. All tests are performed in 2x2 tables
and they are one-sided tests of equality of probabilities in these tables. For the
12 tests we obtain the following ordered obtained levels:

0.000025  0.0164  0.0169  0.0306  0.0350 0.403  0.597
0.9650  0.9694  0.9831  0.9836  0.999975

If we use the multiple test level of significance 0.05, we can reject the hypothesis
only in the first case. This is the comparison of PAS and the combined drug with
respect to any positive reaction (positive smear or negative smear and positive
culture) contra negative reaction (negative smear and negative culture) on the side
where the combined drug gives tendency to negative reaction. It is to be noted
that if we had used tests with conventional level at all places we should have re-
jected four other hypotheses as well. But a procedure using the conventional level
0.05 at each of the 12 tests would have a very low multiple test level of significance
and a very high probability of rejecting some true hypotheses.

ExaMeLE 3. A simple one-way classification. The following example is taken
from. Miller [2] where it is used to illustrate the Newman—Keuls and Duncan multiple
test procedures. There are taken 5 observations in each of 5 classes. The observa-
tions are supposed to be independent and normally distributed with the same vari-
ance in all classes. The pooled estimate of the common standard deviation was

1.2- 1/3:8 2.68 and the means in the five classes were 16.1, 17.0, 20.7, 21.1, and

26.5. We can attack the problem by making (g) = 10 two-sided test for pairwise

comparisons of means or (5), = 20 one-sided tests for pairwise comparisons of
means. We use here two-sided tests.
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Denoting the classes corresponding to the above-ordered means by A, B,
C, D, E we get the following outcomes of test statistics and obtained levels for
pairwise comparisons.

Comparison  Outcome of Obtained level
t-statistic with
20 degrees of

freedom

A-E 6.12 0.0000056 < 0.0050
B-E 5.59 0.000018 < 0.0055
C-E 3.41 0.0028 < 0.0063
D-E 3.18 0.0047 < 0.0071
A-D 2.94 0.0081 < 0.0083
A-C 2.71 0.0135 = 0.0100
B-D 2.41 0.0257

B-C 2.18 0.0414

A-B 0.53 0.602

c-D : 0.24 0.813

Using a multiple test level of significance 0.05 we can now reject the hypotheses
of equality for the pairs 4~E, B-E, C-E, D-E and A-D. Thus we can say that E
is separated from all the others and within this group we can separate 4 and D only.

7. Comments

In these notes I have not made any attempt to review older multiple test methods.
The reader interested in getting a background is referred to Miller [2] and Sver-
drup [4]. Neither have I made any attempt to make any comparisons with older
multiple test methods except the trivial comparisons between some old test pro-
cedures and the corresponding sequentially rejective procedures. In all these cases
the sequentially rejective procedure is always better. A more extensive report in-
cluding proofs, more about special methods, comparisons between methods and
further applications is in preparation.
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ROBUST ESTIMATION IN A LINEAR REGRESSION MODEL

JANA JURECKOVA

Charles University, Prague, Czechoslovakia

-

1. Introduction

A detailed text concerning robust estimation in a linear model will appear in the
monograph: K. M. S. Humak: Statistische Methoden der Modellbildung, Band
II (Academic Verlag, Berlin). Here we shall only give a brief survey of the most
usual types of robust estimates of the regression parameter vector and mention
some of their asymptotic properties.

2. Rohust alternatives to the method of least squares

We shall consider the problem of estimating the regression parameters of a linear
model. We want to estimate 8 after observing X, = (Xi,, ..., X,,) Where

.1 X, = C,p+E,

B = (B, ..., B,) is a vector of unknown regression parameters, E = (E,, ..., E,) is
a vector of errors and C, = ((c,,v)){: 1 Pis a matrix of known regression constants
(design matrix) of the rank p. Most of our considerations will be asymptotic as the
number of observations »n grows and the number of regression parameters p re-
mains fixed. Thus, the coordinates of X, and of C, depend on n; we shall not in-
dicate explicitly this dependence provided no confusion arises.

We shall suppose throughout that E;, i = 1, ..., n, are independent and identi-
cally distributed with a common distribution function F and density f with respect
to the Lebesgue measure; F and f.are generally unspecified.

If Fis normal with the mean 0, the appropriate procedure is to minimize the
sum of squares

n
\2 .
2.2) Z(Xi— }E‘_‘ cuﬁ,) = min
=1 =1
or, equivalently, to solve the system of equations

n

@.3) D (x- 2c,kﬂk)cu =0, j=1,..p.
k=

=3}
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