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Added in proofreading

Another construction of multiple test procedures often leading to tests equivalent to those suggested

here is given in:

[BIR. Marcus, E. Peritz and K. R. Gabriel, On closed testing procedures with special
reference to ordered analysis of variance, Biometrika 63 (1976), pp. 655-660.

Further development of sequentially rejective multiple test procedures can be found in:

[61S. Holm, A simple sequentially rejective multiple test procedure, Scand. Journ. of Stat. 6 (1979),
pp. 65-70.

[713.P. Shaffer, Control of directional errors with stagewise multiple test procedures,
Ann. Stat., to appear.

[81S. Holm, A stagewise directional test for the normal regression situation, Conference report
from The sixth conference on probability theory, Brasov, Romania, 11~15 Sept. 1979, to appear.
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1. Introduction

A detailed text concerning robust estimation in a linear model will appear in the
monograph: K. M. S. Humak: Statistische Methoden der Modellbildung, Band
II (Academic Verlag, Berlin). Here we shall only give a brief survey of the most
usual types of robust estimates of the regression parameter vector and mention
some of their asymptotic properties.

2. Rohust alternatives to the method of least squares

We shall consider the problem of estimating the regression parameters of a linear
model. We want to estimate 8 after observing X, = (Xi,, ..., X,,) Where

.1 X, = C,p+E,

B = (B, ..., B,) is a vector of unknown regression parameters, E = (E,, ..., E,) is
a vector of errors and C, = ((c,,v)){: 1 Pis a matrix of known regression constants
(design matrix) of the rank p. Most of our considerations will be asymptotic as the
number of observations »n grows and the number of regression parameters p re-
mains fixed. Thus, the coordinates of X, and of C, depend on n; we shall not in-
dicate explicitly this dependence provided no confusion arises.

We shall suppose throughout that E;, i = 1, ..., n, are independent and identi-
cally distributed with a common distribution function F and density f with respect
to the Lebesgue measure; F and f.are generally unspecified.

If Fis normal with the mean 0, the appropriate procedure is to minimize the
sum of squares

n
\2 .
2.2) Z(Xi— }E‘_‘ cuﬁ,) = min
=1 =1
or, equivalently, to solve the system of equations

n

@.3) D (x- 2c,kﬂk)cu =0, j=1,..p.
k=

=3}
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The least-squares estimate

24 /§ = 3:1ClX, where Z,=C,C,

is admissible with respect to the quadratic loss if and only if Fis normal (see Kagan—
Linnik-Rao [17)).

For the location submodel (p = 1, ¢;y = 1) three different classes of estima-
tion procedures alternative to (2.4) have been considered: M-estimates (estlmates
of the maximum Iikelihood type), R-estimates (based on ranks of observatlons)
and L-estimates (linear combinations of order statistics). These procedures lead —
in a more or less straightforward way — to extensions to a linear regression model.

We shall work with the residuals

P .

8B = Xi= Y ey i=1,.,m.

j=1

(2.5

The common idea of all these procedures is to replace function (2.2), to be mini-
mized, by some other function less sensitive to the extreme values of the residuals
@.5).

2.1. L-estimates

In the location submodel, L-estimates are the linear combinations of order statistics.

If XM < ... < X™ are the ordered observations, the estimates are of the form
n

2.6) g = Z LXO,
=1

If the coefficients 1; are generated by a suitably chosen weight function J such that
1
§J@)F-(w)du = 0 so that & = n~tJ(/(n+1), i=1,...,n, and various other
0

regularity conditions are satisfied (see Bickel [2], Chernoff, Gastwirth, Johns [4],
Shorack [21], Stigler [22], then n'/2(§**— B) is asymptotically normal with the mean
0 and the variance

@D K@ F) = {7F@)IF) [Fmin e, »)-FE) FO)]dxdy.
If Fis known, then

1

1
) = d‘}’(t . (F‘l(t)) [S d‘P(t ) f(F 1(t))dt]
0

“where
_fEFE@®)
FEIR)

yields an asymptotically efficient estimate, i.e. one which achieves the information
inequality. lower bound as 7 > oo (Jung [14]).

@t f) =

0<t<l,

icm
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Of particular interest.from the point of view of robustness are the a-trimmed
means corresponding fo
J([): T*_‘l—ig if et l—a, 0<M<%—,

0 otherwise.

The first extension of the L-procedures to the linear model is due to Bickel
[3]. In the location model it coincides with the procedure defined in (2.6).

In the general case, this is not so straightforward: the procedure starts with
a preliminary reasonably good estimate f*. The resulting estimate is then equal
to * plus an additive term depending on the ordered residuals §,(8%) (see (2.5)).
For instance, to get an analogue of the trimmed mean, all observations correspond-
ing to residuals with the “position index” less than « or greater than (1—a) are
trimmed off; the usual least-squares estimate is then determined from the remaining
observations.

The estimates are, under the regularity conditions, asymptotically normal
with the covariance matrix X;(J, F)Z;! with- K; given in (2.7) and X, = C,C,
We see that the relative efficiencies of the estimates are independent of the design
matrix C, and thus the robustness results carry over from the location problem
(we shall find the same for M and R-estimates).

2.2. M-estimates
‘We obtain M-estimates of regression parameters if we minimize, instead of (2.2),

vg(Xi i cuﬁj) = min,

r=l = N
where g is some (usually convex) functmn. If we differentiate (2.8) we obtain (with
» = o) the following analogue of (2.3):

iW(Xi" chﬁk)cu =0, j=1,..

which is equivalent to (2.8) if o is convex.

The class (M) has been originated by Huber ([10], [11]) for the location model
and extended by Relles [20] and Huber [12] to the regression model.

If fis smooth and p = —"/f, then the M-estimate coincides with the maximum
likelihood estimate. Moreover, if f is normal with the mean 0, we obtain the least
squares estimate (2.4).

Under various regularity conditions, the above authors proved that the M-
estimate is asymptotically normal (as n — oo and p is fixed) with the mean § and the
covariance matrix K,(y, F)-Z;' where

@10) K@, P) = {2 dr)- [[ware] ™

2.3. R-estimates

Hodges and Lehmann [8] suggested estimates of location based on Wilcoxon and
other tank tests; they showed that their asymptotic variances could be computed

(2.8)

2.9) P
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from the power functions of the tests, and that the estimates never have much lower
but sometimes infinitely higher efficiencies than the sample mean.

icm

Adidie (1967), following the ideas of Hodges and Lehmann, defined the estimates .

of B, and B, in the regression model X; = f1+f,ci+E;, =1, ...,n, based on
the Wilcoxon test and found their asymptotic distribution. Jure¢kova [15], Koul [18]
and Jaeckel [13] then extended the procedure to the p-parameters regression and to
the general rank tests. The three respective estimates are asymptotically equivalent
and thus have the same asymptotic distribution and efficiency.

Roughly speaking, we obtain R-estimates if we minimize, instead of (2.2),

n

D 4(R) 8,(8) = min,

i=1

with respect to 8 = (8y, ..., §,)". Here R; is the rank of 6,(8) in (81(8), ..., 8,(8))

@11

and a,(-) is some monotone score function (for simplicity normed so that }_: a,(i)
=1

= 0). If we differentiate (2.11), which is a piecewise linear convex function of g,
we obtain the approximate equalities at the minimum:

n

Zan(-Ri)cij =0, j=1,..,p.

i=1

(2.12)

These approximate equations can in turn be reconverted into a minimum problem
e.g.
P

Z|Zna,,(Ri) c,-,-‘ = min.
i=1

2.13) ‘
=1

The variant (2.13) was investigated by Jure€kova [15] and (2.11) by Jaeckel, who
also proved the asymptotic equivalence of both.

The score function a,(i) is supposed to be generated by a non-constant, non-
decreasing square-integrable function ¢(¢), 0 < ¢ < 1, in the following way:

an(i)=<p(n;1), i=1,..,n.

'

(2.14)

If f is known and smooth, then

_PE)
fFE1)

yields an asymptotically efficient estimate.

) Under some regularity conditions, the estimates are asymptotically normal
with the mean # and the covariance matrix Ki(p, F)- Z;', where

(2.15)

M) =9(.f)= 0<i<1,

1 1
@16  K(p,F)= [OS *(t)dt~ ( 05 par)] [§ e Ot £t
0
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Besides the solution of (2.11) of (2.13), the estimates allow one step versions:
start with some reasonably good preliminary estimate, and then apply one step
of Newton’s method to the corresponding system of equations. Such an estimate
was investigated by Kraft and van Eeden [23].

Finally, some adaptive estimation procedures are worth of mentioning. If the
underlying distribution F is unknown, the procedure is accomplished by estimating
the optimal score function ¢(z,f) (or 9, or J) either from a part of or from all
observations and by calculating the estimate generated by this function. For the
location submodel, such estimates have been considered e.g. by Hajek-Sidak [6],
Hijek [7], van Eeden [23], Beran [1]. Analogous estimates for the general linear
model have been investigated by Dionne [5]. Despite the fact that such schemes
have excellent asymptotic properties, the convergence is too slow and the sample
size must be estremely large if the results are to be satisfactory. Hogg [9] mentioned
that instead of the direct application of Hajek and van Eeden, a rougher approxima-
tion of ¢ may be useful.

We have seen from the above remarks that the three estimation procedures
follow the same idea: to decrease the possible influence of outlying observations.
Any one of them could lead to an asymptotically efficient estimate in the case where
the basic distribution is known. In fact, as n — oo, the estimates are closely related
to one another. For instance, suppose that the respective J, ¢ and g-functions are
smooth and connected in the following way:

1
J{t) = (p'(t)f(F“(t))[Sgﬁ'(t)f(F"l(t))dt]—l,
0

v (¥) = cp(F(x)), ¢>0;
then the corresponding L, M and R-estimates are asymptotically equivalent in prob-
ability.

.17
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A REMARK ON THE CONDITIONING IN LIMIT THEOREMS
FOR DEPENDENT RANDOM VECTORS IN R?

ANDRZEJ KLOPOTOWSKI

Institute of Mathematics, Nicholas Copernicus University,
Toruh, Poland

A main problem of the classical theory of probability concerns limit distributions
for sums of infinitesimal systems of independent random variables. There exists
a complete solution of this problem given by necessary and sufficient conditions
for the convergence in law of such systems to arbitrarily fixed, infinitely divisible
probability measure.
Now the following problem is still open. Let there be given an infinitely divisible
probability measure Q on R? with the characteristic function
pa) = exp{z'(i? B4 4D+ | (e“?' Bo1- J—(f:x’—) LR g, (?c)}, TeRY,
) NI ]
where % € RY, A is nonnegative definite dx d-matrix, p is the finite measure on R,
,u({5}) = 0. Describe double sequences of random vectors {{X,}1 <k ney Which

kn
converge in law to Q, i.e. the distributions of sums S, = z Xux, n € N, are weakly
k=1

convergent to Q. First, for row-wise independent systems their infinitesimality
can be replaced by more general condition

ki

y
- - -

lim Y |Ee@Xm—a0_12 =0, 7ekR

N4 00 km 1

where G, := E()?,,k I ull < €)), & > 0, and the above conditions remain necess-
ary and sufficient.

Next, let us admit a dependence between -vectors in the same row. One way
to find sufficient conditions for the convergence in law to @ which generalise the
classical case is the following: we replace all mean values in known necessary and
sufficient conditions by conditional mean values with respect to suitably chosen
o-fields and the ordinary convergence we replace by the convergence in probability
of such obtained random vectors. Now we give an example of such result.
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