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A REMARK ON THE CONDITIONING IN LIMIT THEOREMS
FOR DEPENDENT RANDOM VECTORS IN R?

ANDRZEJ KLOPOTOWSKI

Institute of Mathematics, Nicholas Copernicus University,
Toruh, Poland

A main problem of the classical theory of probability concerns limit distributions
for sums of infinitesimal systems of independent random variables. There exists
a complete solution of this problem given by necessary and sufficient conditions
for the convergence in law of such systems to arbitrarily fixed, infinitely divisible
probability measure.
Now the following problem is still open. Let there be given an infinitely divisible
probability measure Q on R? with the characteristic function
pa) = exp{z'(i? B4 4D+ | (e“?' Bo1- J—(f:x’—) LR g, (?c)}, TeRY,
) NI ]
where % € RY, A is nonnegative definite dx d-matrix, p is the finite measure on R,
,u({5}) = 0. Describe double sequences of random vectors {{X,}1 <k ney Which

kn
converge in law to Q, i.e. the distributions of sums S, = z Xux, n € N, are weakly
k=1

convergent to Q. First, for row-wise independent systems their infinitesimality
can be replaced by more general condition
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where G, := E()?,,k I ull < €)), & > 0, and the above conditions remain necess-
ary and sufficient.

Next, let us admit a dependence between -vectors in the same row. One way
to find sufficient conditions for the convergence in law to @ which generalise the
classical case is the following: we replace all mean values in known necessary and
sufficient conditions by conditional mean values with respect to suitably chosen
o-fields and the ordinary convergence we replace by the convergence in probability
of such obtained random vectors. Now we give an example of such result.
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THEOREM. Let there be given a double row-wise increasing sequence of o-fields
{{Fu}o<k<kninen Such that every X is Fy-measurable. Let us denote

Ank = E(XnkI(Xnk € V)[Fn,k—1)> 1<k<k,neN,

f’;k = -X_;:xk"'znkg 1<k< kn’ nENa
for a certain fixed V < R, OctV. If
ko -
@ Z {znk"'E -———Y-E.E— Fy ke } "P)a7
— L+ Y ol ?
kn
@ > E(-ﬂ’fﬁ"ﬂ— F,,,k_l)frau+ {28, 1<i7<d
= T4+ Y ol a (121}
and
kn -
(3) E ”YnkHZ 7 g P — e
Nl 1P, eE)Fy iy | > u(E), EeContu, 0¢E,
= 14| Vud?

or, equivalently,

kn
> (T e BF e % §
=T E
then each of the following condilions
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©) ZlE(e"@-?nk>—1|Fn.k_olz50, TR,
k=1
0) max P(|Zull > elFpi ) >0, >0,
I<k<ky
@ max P(|¥ull > elFyr) >0, &3>0,
1<k<<ky
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is sufficient for the convergence in law of {{X)} to Q.

In a similar way we can generalise the classical limit theorems induced by
Levy’s and Kolmogorov’s representations for Q (see [3)).

There is an open question if there exist other reasonable methods of choosing
{{Fu}}. Dvoretzky in [1] and [2] has proposed the conditioning with respect to
the former row sum, i.e.

k
F, nk = B( :X;ni)s
=1

Fy o= {Q,Q}, <k<k, neN.
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In fact, he has also used the conditioning with respect to “at least all past™, because
he has passed to another “good” probability space, where row sums of new random
varjables have the same distributions as previously, but in addition they form
a Markov sequence. In [3] we have present our doubts if such a transition preserves
all conditions (1)~(3) and, for example, (6). Now we can give the following simple
example that the main theorems of [1] and [2] are false.

Let us take two independent random variables Y;, Y, defined as follows:

P[Y, = +4] = P[Y; = —4] = P[Y, = +3] = P[¥, = 3] = }.
We define a double sequence of dependent random variables {{X,i}i<x<anlnen:
Y,
Xn.8s+1 = "Xn.85+4 = “‘Xn,85+5 = X, gs+8 = L 3
5yn
Y,
Xn, 8542 = _Xn,as+3 = —Xu 8546 = Xn, 8547 = __zT,
5yn
for s =0,1,...,n—1. It is easy to verify that this double sequence satisfies the

following conditions:

6) % E(X kiani) =0, neN,
(i) Z{ (X, nk\Zan)—!E( ] ZXM)]}—L neNn,

(i) é E(XAI (Xl > )] 2 %) =0,

for every ¢ > 0 and sufficiently large n e V.

Theorem 2.2 of [2] (a generalisation of the Lindeberg-Feller theorem) asserts
that (i)~(iii) imply the convergence in distribution of S,, n € N, to the normal law
N(0, 1), but it is obvious that S, =0 for all n€N.
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